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Chapter 5. 

SUSTAINABLE AGRICULTURE IN THE DIGITAL 

AGE: INNOVATIONS IN INSURANCE 

Sustainable agriculture acts as a crucial pillar of global development, supporting 

economic stability and resource conservation. Advances in data collection, 

remote sensing, and machine learning enabled policymakers to make more 

informed and timely decisions in sustainable farming systems. Furthermore, data 

driven approach has opened new opportunities for forecasting agriculture 

outcomes, and ultimately, for transforming agriculture insurance practices. By 

leveraging Big Data and advanced analytics, insurers can now more precisely 

estimate risk, reduce uncertainty, and form instruments tailored to farmers’ needs 

in changing climate. 

 

The chapter aims to examine how digital innovations in agriculture, particularly 

a machine learning-based insurance model, can deliver effective insurance 

solutions and enhance climate resilience in developing countries like Serbia. 

Furthermore, it explores the contribution of agriculture to sustainable 

development by examining key global trends and underlining agriculture’s 

vulnerability to climate change, particularly in developing countries like Serbia, 

where rising temperatures threaten GDP and productivity. It also highlights the 

increasing role of digitalization in modernizing agricultural practices and 

improving food security. Against this backdrop, the study presents a novel 

machine learning-based model for calculating agricultural insurance premiums 

using historical climate and agricultural data. The model integrates climate 

variability indicators and actuarial principles to calculate expected losses more 

accurately. Serving as a data-driven decision support tool, it aims to enhance risk 

assessment and promote sustainable, resilient insurance solutions in Serbia’s 

agricultural sector. 

 

1. THE CONTRIBUTION OF AGRICULTURE TO 

SUSTAINABLE DEVELOPMENT 

 
Climate conditions are undergoing significant changes, while intensive 

agricultural and livestock production continues to provide food for the global 

population. However, this process can lead to the partial destruction of natural 

habitats, disruption of biodiversity, and deterioration of water quality, among 

other environmental concerns. The Sustainable Development Goals (SDGs) 
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present an opportunity to enhance and promote the advancement of the 

agricultural sector. 

 

Both crop and livestock production are increasingly exposed to various risks due 

to the growing frequency of extreme weather events, climate change, and the 

emergence of new animal diseases. These factors drive the need for agricultural 

insurance as a mechanism for economic protection against diverse agrarian risks. 

At the microeconomic level, insurance provides financial security to agricultural 

producers, ensuring resilience, continuity, and competitiveness while fostering 

long-term development potential. 

 

The climate crisis exacerbates the global food crisis. An unsustainable food 

system worsens the issue due to significant losses during transportation and 

storage, as well as the waste of unused food. Addressing food scarcity in the 

future requires action in several key areas: raising consumer awareness to 

discourage food waste, strengthening legal regulations, and implementing more 

efficient pricing policies that incorporate the environmental costs associated with 

biodiversity loss. Countries with high living standards should strive for balanced 

food consumption patterns and the advancement of international food trade to 

mitigate food deficits. 

 

Figure 1. Agricultural Price Index Trends Until 2050 

 
Source: Food and Agriculture Organization of the United Nations (2018). The future of 

food and agriculture. Alternative pathways to 2050. Rome: FAO, p. 100, 

https://knowledge4policy.ec.europa.eu/publication/future-food-agriculture-

alternative-pathways-2050_en      

https://knowledge4policy.ec.europa.eu/publication/future-food-agriculture-alternative-pathways-2050_en
https://knowledge4policy.ec.europa.eu/publication/future-food-agriculture-alternative-pathways-2050_en
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Figure 1 presents the projected agricultural price index, indicating expected 

changes in agricultural product prices and forecasting market trends for 

agricultural commodities. The base year for comparison is 2012.  

 

Figure 2 illustrates the dynamics of the global number of undernourished people, 

showing trends in food insecurity over time. The base year for reference is 2012. 
 

Figure 2. Global Trend in the Number of Undernourished People Until 2050 

 

Source: Food and Agriculture Organization of the United Nations (2018), op. cit., p. 100. 

 
Companies will face a decline in worker productivity as a consequence of 

heatwaves. Given the pronounced trend of population aging, this issue is expected 

to become more significant. In 1995, rising temperatures in the agricultural sector 

resulted in a loss of 0.04% of total working hours, equivalent to 25,200 lost labor 

hours. Projections indicate that by 2030, the lost working hours will increase to 

0.09%, amounting to 56,700 hours. Table 1 presents the decline in labor 

productivity across various sectors in Serbia. 

 
Due to rising temperatures and declining productivity in enterprises, Serbia's 

GDP is expected to experience significant changes. Projections indicate a GDP 

reduction of $171 million by 2040. Additionally, with a minimum temperature 

increase of 1°C, Serbia's GDP could decline by $1.097 billion by the end of the 
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century. In a more severe scenario, with a 4°C temperature rise, the GDP loss 

could reach $6.261 billion.88 
 

Table 1. Decline in Productivity (Lost Working Hours) Across Different Sectors 

in Serbia: A Comparative Analysis for 1995 and 2030 

Sector 
 

1995 2030 

Agriculture (Shaded) (%) 
 

0.04 0.09 

Industry (%) 
 

0.01 0.03 

Construction (Shaded) (%) 
 

0.04 0.09 

Services (%) 
 

0 0 

Total (%) 
 

0.01 0.03 

Total (in thousand work hours) 
 

0.4 1 

Source: Mitrović & Božanić (2019), op. cit., p. 24.  
 

In alignment with the Paris Agreement, Serbia has adopted the Climate Change 

Strategy with an Action Plan, establishing a comprehensive national policy 

framework aimed at reducing greenhouse gas emissions and enhancing climate 

resilience. Agriculture is among the most vulnerable sectors, facing land 

degradation, reduced ecosystem productivity, and increased frequency of 

extreme weather events89 90. These effects disproportionately impact developing 

countries, which have contributed the least to global emissions. 

 

Intensive agriculture, relying on fossil fuel combustion and extensive legume 

cultivation, has significantly disrupted the nitrogen cycle, resulting in ecosystem 

imbalances, eutrophication, and nitrous oxide emissions—a potent greenhouse 

gas. In response, companies such as Nestlé are adopting regenerative agriculture, 

engaging over 600,000 farmers to promote sustainable, deforestation-free supply 

chains and ecosystem restoration91. 

 
88 Mitrović, Đ., & Božanić, D. (2019). Studija o socio-ekonomskim aspektima klimatskih 

promena u Republici Srbiji, p. 25. Retrieved from https://www.klimatske 

promene.rs/dokumenta/studija-o-socio-ekonomskim-aspektima-klimatskih-promena-

u-republici-srbiji/  
89 Mirković, V., & Lukić, J. (2018). Energy Transition in the EU and Serbia: Strategic 

Approach to Climate Change. Economic Perspectives, 23(3-4), pp. 229-230. 
90 Mihailović, B. M., Radosavljević, K., Popović, V., & Puškarić, A. (2024). Impact of 

digital marketing on the performance of companies in the agricultural sector of Serbia. 

Ekonomika poljoprivrede, 71(1), pp. 173-188. 
91 Creating Shared Value Sustainability Report, 2022, p. 5. Nestle company report. 2020. 

2020 – annual – review – en, Retrieved from 2024-annual-review-en.pdf (nestle.com) 
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Emerging trends emphasize the role of digitalization and ICT, biotechnology, and 

nanotechnology in enhancing productivity and sustainability in agriculture92. The 

Internet of Things (IoT) plays a pivotal role in precision agriculture by enabling 

remote monitoring of soil, crops, and water usage, thus supporting data-driven 

decision-making. IoT systems further facilitate livestock management and pest 

control, both of which are increasingly challenged by climate variability93. 

 

Cloud computing and Big Data analytics allow for the efficient processing of 

large datasets to identify sustainability patterns, optimize energy use, and 

mitigate environmental impacts94. Predictive analytics, driven by these 

technologies, contribute to enhanced production planning and risk reduction95.  

To mitigate climate-related risks, companies are encouraged to implement risk 

assessment, supply chain diversification, resource optimization, investments in 

resilient infrastructure, and the promotion of sustainable business models96 97. 

 

As an example of digital innovation, the BioSens Institute developed the DDOR 

TERRA platform for rapid damage reporting in agriculture. Furthermore, 

robotics and autonomous systems, such as drones and driverless tractors, are 

transforming agricultural operations, although adoption barriers remain due to 

limited technological acceptance among farmers. 

 

2. THE DIGITALIZATION OF AGRICULTURE 
 

In the context of sustainable development, agriculture faces the challenge of how 

to provide enough food for a growing population while preserving natural 

resources and the environment. Digitization in agriculture appears as a key tool 

 
92 Paraušić, V., & Nikolić Roljević, S. (2021). The Role of Innovations in the Agricultural 

Sector in Achieving Serbia's Sustainable Development Goals. Belgrade: Institute for 

Agricultural Economics, p. 18. 
93 Čelik, P. (2020). Digital Transformation of Business and Its Security Implications. 

Novi Sad: Faculty of Economics and Engineering Management, pp. 95-96. 
94 Zečević, A., & Radosavljević, K. (2014). Web-based business applications as the 

support for increased competitiveness in agribusiness. Ekonomika preduzeća, 62(7-

8), pp. 405-418. 

95http://m.srla.cropprotection.net/news/smart-farming-iot-is-transforming-the-future-

42791147.html 
96 De Mauro, A., Greco, M., & Grimaldi, M. (2019). Understanding big data through a 

systematic literature review: the ITMI model. International Journal of Information 

Technology & Decision Making, 18(04), pp. 1433-1461. 
97 Kostić, M. (2021). Precision Agriculture. Novi Sad: University of Novi Sad, 

Agricultural Faculty, p. 18. 

http://m.srla.cropprotection.net/news/smart-farming-iot-is-transforming-the-future-42791147.html
http://m.srla.cropprotection.net/news/smart-farming-iot-is-transforming-the-future-42791147.html
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for solving that challenge, as it introduces advanced technologies for more 

efficient and environmentally responsible production management. Digital 

transformation of the agricultural sector thus becomes a bridge between the 

principles of sustainable development and modern technological solutions, 

including the application of artificial intelligence on farms. Key areas of 

application of digital technologies in agriculture include precise soil analytics, 

irrigation optimization and rational application of pesticides and fertilizers. 

Thanks to sensors, GPS navigation and satellite observation, farmers can monitor 

soil properties such as moisture, pH value and nutrient content in detail, and make 

precise sowing and fertilization plans according to the actual crop needs. At the 

same time, the application of smart irrigation systems based on the Internet of 

Things (IoT) ensures optimal use of water, so that plants are watered at the right 

time and with exactly the amount of water they need. This resource optimization 

reduces waste and increases the resilience of agriculture to drought and climate 

change. Digital innovations also contribute to a more sustainable use of 

agrochemicals through a more rational use of pesticides and mineral fertilizers. 

Drones and digital systems for crop surveillance make it possible to detect pests 

or plant diseases early and allow for targeted application of protective agents only 

where necessary, instead of broad preventive application across entire fields. 

Such an approach not only reduces costs and negative impact on the ecosystem, 

but also preserves soil quality in the long term. In this way, the digitization of 

agriculture lays the foundations for sustainable agricultural development, while 

at the same time opening the door to specific application of artificial intelligence 

in the following chapters. For the aforementioned reasons, we analyze the 

specific contribution of the application of advanced technologies in the 

agricultural sector, with a special focus on precise analytics, optimization of the 

irrigation process and rational use of pesticides and fertilizers. The review will 

include current global trends, European practices and Serbian examples, all in 

order to show how digital transformation contributes to the achievement of 

sustainable development goals in the agricultural sector. 

 

Precise soil analytics 
 

Precise soil management begins with detailed analytics. It includes monitoring 

the chemical composition, structure and moisture content of the soil in real time. 

Networked IoT sensors in the field today record parameters such as moisture, 

temperature, pH and nutrient content, while AI algorithms turn that data into 

recommendations for agronomists. That way, farmers get information about 

when and how much fertilizer to add, or whether the soil is wet enough for 

seeding, instead of relying on field-wide averages. Studies emphasize that lower 
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use of fertilizers and higher soil fertility are the key benefits of this approach98. 

By supplementing historical soil data with data on weather conditions, artificial 

intelligence can predict optimal times for planting and harvesting cultivated 

crops. In this way, it is possible to predict which climatic conditions and soil 

moisture bring the least risk of crop failure. 

 

An example of the use of advanced technology in this area is shown in research 

published in Nature Food. Scientists have developed a soil ammonium sensor 

(called chemPEGS) that, with the help of artificial intelligence algorithms, 

combines multiple factors such as weather data, pH value, soil conductivity and 

time since previous fertilization. The goal is to predict the total nitrogen in the 

soil and establish the optimal time for the next crop feeding99. This system helps 

farmers precisely establish the amount and timing of fertilization, which 

maximizes nutrient utilization by plants and prevents overfertilization that leads 

to pollution. Data shows that the excessive use of fertilizers has so far rendered 

infertile about 12% of the once arable land in the world, and the consumption of 

nitrogen fertilizers has increased by 600% in the last 50 years3. 

 

The European Union’s projects and institutions actively research and apply the 

approach of precise soil analysis. A number of digital agronomy platforms have 

been developed to help farmers make the most optimal decisions. The BioSense 

Institute in Serbia applies various technologies in agriculture. They have 

developed an advanced system for autonomous soil sampling and analysis called 

Agrobot Lala100. It is an automated system that moves over cultivated areas and 

takes soil samples. The goal is to measure nitrate content in real time with the 

help of ion-selective probes101.  

 

Each sample is analyzed individually depending on the geographical location, 

which is a big shift compared to traditional systems that take into account the 

 
98 Sharma, A., Sharma, A., Tselykh, A., Bozhenyuk, A., Choudhury, T., Alomar, M. A., 

& Sánchez-Chero, M. (2023). Artificial intelligence and internet of things oriented 

sustainable precision farming: Towards modern agriculture. Open Life Sciences, 

18(1), 20220713. 
99 Imperial College London (2021). Low-cost AI soil sensors could help farmers curb 

fertilizer use. Phys.org. Retrieved March 19, 2025, from https://phys.org/news/2021-

12-low-cost-ai-soil-sensors-farmers.html 
100 Agrobot for in-field soil analysis. (n.d.). BioSense Institute. Retrieved March 28, 2025, 

from https://biosens.rs/en/themes/agrobot-2 
101 Kitić, G., Krklješ, D., Panić, M., Petes, C., Birgermajer, S., & Crnojević, V. (2022). 

Agrobot Lala—an autonomous robotic system for real-time, in-field soil sampling, 

and analysis of nitrates. Sensors, 22(11), 4207. 

https://phys.org/news/2021-12-low-cost-ai-soil-sensors-farmers.html
https://phys.org/news/2021-12-low-cost-ai-soil-sensors-farmers.html
https://biosens.rs/en/themes/agrobot-2
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average multi-site sample. The result of such a detailed analysis are precise 

fertility maps based on which the user can apply fertilizer in a targeted manner, 

as Figure 3 shows. This system optimizes the soil fertilization process and enables 

sustainable production. 

 

Figure 3. Sampling zones and points generated by Robot Lala 

 

Source: Kitić et al. (2022), op. cit., p. 4. 

 

Optimization of irrigation 
 

Water is a key resource in agriculture. However, traditional irrigation systems 

very often lead to its excessive use. Globally, agriculture uses about 70% of 

available drinking water102, and excess water can lead to soil erosion and 

leaching. Therefore, optimization with the help of artificial intelligence can be a 

significant solution to the problem of suboptimal soil irrigation. Figure 4 shows 

FAO data on shares of water withdrawal and consumption by sector. Water 

withdrawal refers to the amount of water taken from natural sources, regardless 

of whether or not the water will be returned. On the other hand, consumption 

represents the permanent loss of water that is lost or retained in the system. 

 

 

 

 
102 https://www.fao.org/4/y5582e/y5582e04.htm  

https://www.fao.org/4/y5582e/y5582e04.htm
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Figure 4. Share of global water withdrawals and consumption by sector 

 

Source: Food and Agriculture Organization of the United Nations (2004). The role of 

water in agricultural development. Rome: FAO, https://www.fao.org/4/y5582e/ 

y5582e04.htm  

 
AI systems enable precise management of soil irrigation based on weather data 

and overall soil condition. For example, predictive analytics and machine 

learning models can adjust watering schedules based on soil moisture, weather 

forecast and crop development stage. Also, developed sensor networks can take 

into account additional information about a specific crop or soil type so that 

irrigation can be automatically started or stopped in order to maintain the optimal 

level of moisture. 

 

Research shows that the application of AI tools in the irrigation process leads to 

significantly more efficient use of water in the irrigation process. Analysis of 

studies has shown that systems based on artificial intelligence achieve an average 

increase in water use efficiency of 30 to 40% compared to traditional methods103. 

The same study states that under controlled conditions, water consumption was 

reduced by about 88% thanks to an artificial intelligence system that maintained 

soil moisture levels. Also, these systems minimize the degree of soil degradation 

caused by inadequate irrigation. 

 

In Europe, special focus is on precision irrigation. Many European farms are 

already using sensor networks and satellite monitoring. An example is the 

 
103 Oğuztürk, E., Murat, C., Yurtseven, M., & Oğuztürk, T. (2025). The effects of AI-

supported autonomous irrigation systems on water efficiency and plant quality: A case 

study of Geranium psilostemon Ledeb. Plants, 14(5), 770. 

https://www.fao.org/4/y5582e/%20y5582e04.htm
https://www.fao.org/4/y5582e/%20y5582e04.htm
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AgriBIT project. A large number of services have been developed that integrate 

satellite data and sensors in order to effectively monitor crop status and soil 

moisture in real time through a mobile application104. Such systems can bring 

flexibility when planning irrigation. In Serbia, irrigation is insufficiently 

developed and it is estimated that only 8.3% of arable land is irrigated. However, 

this may mean that there is huge room for improvement in this field. BioSense 

institute initiatives have included satellite detection of irrigation problems. The 

cooperation of the European Union and FAO resulted in the installation of 

automatic meteorological stations for moisture monitoring in Serbia. It is 

expected that the wider application of such technologies will contribute to the 

development of agriculture at the level of the entire country. 

 

Correct dosing of pesticides and fertilizers 

 
The application of pesticides and mineral fertilizers is an area where precision 

agriculture brings direct environmental benefits. The traditional spraying 

approach often involves the application of preparations over the entire soil 

surface, which leads to wastage and irrational consumption of fertilizers105. 

Artificial intelligence tools have the potential to change this with the help of 

computer vision and machine learning. Drones or machines equipped with 

cameras recognize weeds, pests or signs of crop disease, so chemicals are applied 

only where they are really needed. For example, modern “spot-spraying” sprayers 

use high-resolution cameras and AI algorithms that can recognize each weed 

between crop rows in a fraction of a second and activate the spray directly above 

the spotted weed, instead of continuously spraying the entire field. This can 

drastically reduce the amount of herbicide used. Field tests on soybeans in Iowa 

(USA) showed savings of 76% in the use of herbicides on average (from 43% to 

even 91% per individual field), without losing the effectiveness of weed 

control106. Similarly, experts report that AI targeted spraying systems have helped 

farmers reduce overall pesticide use by up to 90% in some cases107. Such a 

significant reduction in chemicals not only reduces costs for farmers, but also has 

great environmental significance such as reducing water and soil pollution, 

 
104 https://cordis.europa.eu/article/id/454267-improving-europe-s-precisi on-agriculture-

with-ai  
105 Richards, A. (2024). The Environmental Impact of Precision Spraying: Reducing 

Chemical Use and Protecting Ecosystems. AgTechLogic. Retrieved March 15, 2025, 

from https://agtechlogic.com/the-environmental-impact-of-precision-spraying-redu 

cing-chemical-use-and-protecting-ecosystems/ 
106 https://growiwm.org/herbicide-savings-from-precision-spraying-technology/ 
107https://agresearch.okstate.edu/news/articles/2024/scientists-use-ai-to-reduce-ag-costs-

and-labor.html 

https://cordis.europa.eu/article/id/454267-improving-europe-s-precisi%20on-agriculture-with-ai
https://cordis.europa.eu/article/id/454267-improving-europe-s-precisi%20on-agriculture-with-ai
https://agtechlogic.com/the-environmental-impact-of-precision-spraying-redu%20cing-chemical-use-and-protecting-ecosystems/
https://agtechlogic.com/the-environmental-impact-of-precision-spraying-redu%20cing-chemical-use-and-protecting-ecosystems/
https://growiwm.org/herbicide-savings-from-precision-spraying-technology/
https://agresearch.okstate.edu/news/articles/2024/scientists-use-ai-to-reduce-ag-costs-and-labor.html
https://agresearch.okstate.edu/news/articles/2024/scientists-use-ai-to-reduce-ag-costs-and-labor.html
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saving beneficial insects (pollinators, pest predators) and slowing down the 

emergence of harmful organisms. 

 

Scientific literature confirms these trends. The European Parliament’s analysis 

states that precision methods can lead to a 20-30% reduction in pesticide use, as 

well as up to 50-80% less pesticide-treated area (owing to targeted application 

instead of treating every hectare)108. This protects ecosystems and biodiversity on 

and around agricultural land. Fewer chemicals in the fields means preservation 

of the population of bees and other pollinators, as well as richer microbiological 

life in the soil itself. In addition, precise variable fertilization (with the help of 

VRT (variable rate technology) allows mineral fertilizers to be applied only 

where soil analyses show a nutrient deficit, thereby reducing the total amount of 

nitrogen and phosphorus input. 

 

In Europe, these techniques are the focus of sustainable agriculture strategies. 

Through the “Farm to Fork” strategy, the EU set the goal of reducing the use of 

chemical pesticides by 50% by 2030109. Achieving that ambitious goal relies 

heavily on the wider application of precision spraying and integrated pest 

management (IPM). Examples of good practice already exist: European 

producers and researchers have developed systems that combine satellite imagery 

for the early detection of diseases and pest attacks with drones that carry out 

targeted spraying only on vulnerable parts of plots. 

 

Serbia follows these trends as well. Larger farms have started using drones to 

spray orchards and GPS-guided sprayers with sector control (turning off nozzles 

on already treated zones). However, experts point out that the adoption of 

precision agriculture in Serbia is only in its infancy among small farms, mainly 

due to costs and lack of information110. Projects such as the EU H2020 DRAGON 

educate farmers on the cost-effectiveness of precision methods and have 

demonstrated successful case studies, from space-based crop monitoring to pest 

risk assessment models111. 

 

 
108 https://croplifeeurope.eu/farmers-toolbox/digital-and-precision-agriculture/ 
109 European Commission (2023). Using Less Chemical Pesticides: European 

Commission Publishes Toolbox of Good Practices. News Article, Retrieved March 27, 

2025, from https://agriculture.ec.europa.eu/media/news/using-less-chemical-

pesticides-european-commission-publishes-toolbox-good-practices-2023-02-28_en 
110https://www.acdivoca.org/2024/02/making-agriculture-smarter-in-serbia-through-

precision-farming/ 
111https://cordis.europa.eu/article/id/435491-lighting-a-beacon-for-precision-farming-

knowledge-in-serbia 

https://croplifeeurope.eu/farmers-toolbox/digital-and-precision-agriculture/
https://agriculture.ec.europa.eu/media/news/using-less-chemical-pesticides-european-commission-publishes-toolbox-good-practices-2023-02-28_en
https://agriculture.ec.europa.eu/media/news/using-less-chemical-pesticides-european-commission-publishes-toolbox-good-practices-2023-02-28_en
https://www.acdivoca.org/2024/02/making-agriculture-smarter-in-serbia-through-precision-farming/
https://www.acdivoca.org/2024/02/making-agriculture-smarter-in-serbia-through-precision-farming/
https://cordis.europa.eu/article/id/435491-lighting-a-beacon-for-precision-farming-knowledge-in-serbia
https://cordis.europa.eu/article/id/435491-lighting-a-beacon-for-precision-farming-knowledge-in-serbia
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However, despite all the advantages that artificial intelligence and digitization 

bring, risks in agriculture cannot be completely eliminated. Extreme climatic 

events, plant diseases and other unforeseen circumstances can still significantly 

threaten yields, regardless of the level of technology application. That is why, in 

addition to technological solutions, the development of modern insurance 

systems in agriculture plays a key role in ensuring the long-term stability and 

safety of food production. 

 

3. INNOVATIONS IN AGRICULTURE INSURANCE 
 

Agriculture production has proved to be highly risky venture. The uncertainty of 

future prices and yields impedes farmers’ long-term capital planning and short-

term production resolutions. As probability of default is relatively high, financial 

institutions are unwilling to approve loans to farmers, ultimately reducing farm 

profits in the long term. Due to the substantial systematic component present in 

a portfolio of agriculture risks, insurance markets are often unable to conduct 

affordable risk management mechanism for agriculture production. As a result, 

many governments subsidize insurance companies and/or farmers in form of 

price-support programs, tax breaks, subsidized reinsurances, etc. However, 

government programs seldom provide expected results and come at a high social 

cost.112 

 

In the face of extreme weather events and climate change, the implementation of 

advanced technologies and tools has transfigured the agriculture insurance sector, 

enabling more precise, effective and efficient resolutions for both insurers and 

producers. Artificial Intelligence (AI) and blockchain-based contracts have 

proved to enhance insurance premium pricing, loss prediction and farmers’ 

adjustment to climate challenges. AI analyzes extensive datasets on weather 

patterns, crop health, market trends for real-time policy customization, while 

blockchain eases automated claims processing through smart contracts, reducing 

costs and improving transparency. 113 Companies such as Etherisc and Limonade 

have incorporated parametric insurance, offering automatic compensation 

calculated on predefined events rather than traditional damage assessments.  

 

Furthermore, digital platforms and mobile technology have broadened access to 

agriculture insurance by facilitating claims filing process and policy 

management. Digital transformation improves customer experience and 

 
112 Miranda, M., & Vedenov, D. V. (2001). Innovations in agricultural and natural disaster 

insurance. American Journal of Agricultural Economics, 83(3), p. 653. 
113 Venturini, R. E. (2025). Revolution in agricultural insurance: the integration of AI and 

blockchain for a more efficient and resilient sector. Revista Sistemática, 15(3), p. 192. 
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operational efficiency, while mobile apps enable farmers to purchase insurance, 

receive payouts, and report losses.114 

 

Drone technology has significantly improved agricultural insurance assessments 

by improving accuracy, efficiency, and cost-effectiveness. Equipped with 

advanced sensors, drones capture high-resolution images that allow insurers to 

assess crop health, estimate yields, and evaluate damage with precision. Their 

ability to rapidly cover large farmland areas accelerates claims processing and 

reduces reliance on subjective manual inspections, which is especially crucial 

after natural disasters. Additionally, drones help mitigate fraud and improve risk 

management, leading to more accurate insurance policies tailored to farmers' 

needs. By fostering transparency and ensuring fair compensation, drone 

technology strengthens trust between farmers and insurers, ultimately benefiting 

the agricultural sector.115 

 

Finally, innovations in agricultural insurance are progressively integrating 

conservation practices such as no-till and mini-till technologies to enhance risk 

mitigation and optimize claim management. A 2019 analysis of prevent-plant 

crop insurance claims across six Midwestern states showed that fields utilizing 

cover crops and no-till methods were 24% less likely to be classified as “prevent 

plant” and receive insurance payouts compared to conventionally managed fields. 

This finding underscores the potential of conservation agriculture to buffer 

against adverse weather conditions, thereby reducing both the incidence and 

magnitude of insurance claims. 116 

 

A Data-Driven Approach to Premium Calculation 

 
The evolution of agricultural insurance has been profoundly influenced by 

advances in Big Data analytics, machine learning, and climate modelling. Recent 

literature highlights the increasing importance of data-driven risk assessment, 

particularly in the context of climate uncertainty and yield variability. Traditional 

methods of premium calculation often fail to capture the spatial and temporal 

 
114 World Bank Group (2022). Disruptive innovations boost uptake of agriculture 

insurance solutions in Kenya. Retrieved March 19, 2025, from 

https://www.worldbank.org/en/news/feature/2022/06/15/disruptive-innovations-

boost-uptake-of-agriculture-insurance-solutions-in-kenya 
115https://husfarm.com/article/the-impact-of-drones-on-enhancing-agricultural-

insurance-assessments 
116 Environmental Defence Fund (2023). Cover crops reduce insurance claims and lower 

costs for taxpayers. Retrieved March 19, 2025, from https://business.edf.org/ insights/ 

cover-crop-insurance-claims 

https://www.worldbank.org/en/news/feature/2022/06/15/disruptive-innovations-boost-uptake-of-agriculture-insurance-solutions-in-kenya
https://www.worldbank.org/en/news/feature/2022/06/15/disruptive-innovations-boost-uptake-of-agriculture-insurance-solutions-in-kenya
https://husfarm.com/article/the-impact-of-drones-on-enhancing-agricultural-insurance-assessments
https://husfarm.com/article/the-impact-of-drones-on-enhancing-agricultural-insurance-assessments
https://business.edf.org/%20insights/%20cover-crop-insurance-claims
https://business.edf.org/%20insights/%20cover-crop-insurance-claims
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complexities of climate risk, leading to inefficiencies in pricing and risk 

allocation. This study builds on recent advancements by proposing a precision-

based insurance model tailored to the Serbian agricultural sector, focusing on 

wheat, corn, and soy cultivation. 

 

By integrating machine learning, climate analytics, and actuarial modelling, this 

research offers an innovative framework for agricultural insurance, improving 

pricing accuracy and risk assessment. The proposed model serves as a data-driven 

decision support tool for insurers, facilitating more sustainable and resilient 

agricultural insurance policies in Serbia. Historical data from wide variety of 

climate, agriculture and market information serve as a fuel to novel approach of 

insurance companies’ business model. 

 

The proposed insurance premium calculation model is structured around the 

fundamental actuarial principle that premium is composed of expected loss and a 

risk adjustment factor multiplied with standard deviation of consecutive dry days. 

Formally, the premium is expressed as: 
 

Premium = E(L) + λ * σCDD 

 

Where E(L) represents the expected loss, λ is the risk load factor, and σCDD  

denotes the standard deviation of consecutive dry days, serving as a measure of 

climate variability and systemic risk. This approach is consistent with the Sharpe 

ratio method, where the risk margin is proportional to the standard deviation of 

the insurer's cost. 117 

 

Expected loss is mathematically defined as: 
 

E(L) = P(D) × (Yf −Yo) × Pf 
 

Where P(D) represents the probability of drought, Yf is the expected yield, Yo is 

the observed yield, and Pf is the market price of the respective crop.118 

 

The primary objective of this research is to accurately estimate the expected loss 

by leveraging Big Data sources, including the Digital Atlas of Serbia and the 

Statistical Office of the Republic of Serbia. 

 
117 Leblois, A., & Quirion, P. (2013). Agricultural insurances based on meteorological 

indices: realizations, methods and research challenges. Meteorological Applications, 

20(1), pp. 1-9. 
118 Kleshchenko, A. D., Lebedeva, V. M., Goncharova, T. A. et al. (2016). Estimation of 

drought-related yield loss using the dynamic statistical model of crop productivity 

forecasting. Russian Meteorology and Hydrology, 41, pp. 299-306. 
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At the core of this model is the integration of agricultural and climate Big Data 

to enhance the accuracy of premium calculations. The proposed methodology 

utilizes historical climate data from the Digital Atlas of Serbia, specifically 

focusing on wheat, corn, and soybean cultivation. The dataset encompasses two 

key climatic indicators—the aridity index and vegetation period—for the Čurug 

region, one of Serbia’s most fertile agricultural areas, covering the period from 

1950 to 2020. 

 

Aridity index (AI) has proved as critical indicator for assessing and predicting 

drought, for it distinguishes type of climate in respect of water availability. 

Furthermore, AI considers climatic data of precipitation (P), evapotranspiration 

(PET) and air temperature (T):119 
 

AI = (
P

PET
) 

 

where P is the monthly precipitation and PET is the monthly potential 

evapotranspiration. Typically, values below 0.5 indicate dry conditions. 

 

According to the United Nations Environment Programme (UNEP)120 classify-

cation criteria of climate risk, drought severity is classified into four categories: 

extreme, moderate, mild, and no drought, based on AI. Table 2 shows defined 

criteria. 

 

Table 2. Drought Classification Criteria 

Category Aridity Index 

Severe Drought Less or equal than 0.2 

Moderate Drought Less or equal than 0.35 

Mild Drought Less or equal than 0.5 

No Drought else 

Source: Budyko, M. I. (1958). The Heat Balance of the Earth's Surface. Soviet 

Geography, 2(4). 

 

Upon analyzing the 70-year dataset of the most fertile agricultural region in 

Serbia, no recorded instances of drought were observed based on the United 

Nations Environment Programme (UNEP) classification. The Aridity Index (AI) 

values remained consistently above the threshold defining drought conditions, 

leading to a dataset where the column Drought contained only a single class: "No 

Drought." Given the absence of variation in drought classifications in Čurug 

 
119 Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. 

Geographical Review, 38(1), pp. 55-94. 
120 https://www.unep.org  

https://www.unep.org/
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region example, traditional supervised learning techniques, which rely on 

multiple class labels for training, were not applicable in the context. 

 

Figure 5. One-Class SVM Drought Detection 

 
Source: Author’s calculations. 

 

To address this challenge, an unsupervised anomaly detection approach was 

employed using the One-Class Support Vector Machine (One-Class SVM). One-

Class SVM is a robust machine learning algorithm specifically designed for 

outlier detection in scenarios where only one class is well-represented in the data. 

It constructs a decision boundary around the majority class (in this case, normal 

conditions) and identifies deviations from this learned distribution as potential 

anomalies.121 

 

The model was trained on two key climatic indicators: the Aridity Index and 

Vegetation Period, both of which play a crucial role in drought assessment. The 

trained One-Class SVM model assigned each data point to either the normal 

climatic condition class (1) or an anomalous (potential drought-like) class (-1). 

The resulting classification was visualized in Figure 5 (shown above), where the 

red-colored points represent data instances flagged as anomalies by the model. 

These instances, despite not meeting traditional drought classification criteria, 

highlight periods where climatic conditions exhibited slight deviations from the 

typical pattern observed over the seven-decade period. 

 

 
121 Yin, S., Zhu, X., & Jing, C. (2014). Fault detection based on a robust one class support 

vector machine. Neurocomputing, 145, pp. 263-268. 
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Finally, the study integrates historical yield and price data of wheat, soybean, and 

corn with the Extreme Gradient Boosting (XGBoost) machine learning algorithm 

to enhance the accuracy of both yield and price forecasts, thereby improving the 

precision of agricultural insurance premium calculations. XGBoost constructs an 

ensemble of decision trees that iteratively correct prediction errors while 

incorporating regularization techniques to mitigate overfitting.122  

 

The dataset spans from 2005 to 2022, enabling the model to capture long-term 

yield variability and price-related influences. To account for temporal 

dependencies, lag features representting the previous year's yield values are 

introduced, allowing the model to learn patterns in yield fluctuations.  

 

The dataset is standardized using StandardScaler to ensure numerical stability, 

while a train-test split method used data from 2005 to 2021 for model training 

and 2022 for validation. Separate XGBoost regression models are trained for each 

crop, utilizing a squared error loss function and hyperparameters optimized for 

predictive performance. Future yield and price predictions for the period 2024–

2026 are generated iteratively, where the predicted values serve as inputs for 

subsequent years, enabling multi-year forecasting. Table 3 presents the predicted 

prices and yields for wheat, soybean, and corn.  

 

Table 3. Predicted Prices and Yields for Wheat, Corn and Soy 

Year 
Wheat 

Yield 

Wheat 

Price 

Corn 

Yield 

Corn 

Price 

Soy 

Yield 
Soy Price 

2024 4.0998 17.5487 6.3984 16.0269 2.4001 43.6402 

2025 3.4084 16.5514 6.2987 14.5077 2.1028 35.4479 

2026 4.2973 17.8297 5.9001 14.3909 2.4001 34.7039 

Source: Author’s calculations 

 

By integrating historical data with machine learning techniques, this approach 

enhances the accuracy of price, yield, and drought probability forecasts, leading 

to improved risk assessment in agricultural insurance. The incorporation of 

conservation practices, such as no-till and mini-till technologies, further 

strengthens risk mitigation by reducing insurance claims associated with adverse 

weather conditions. Additionally, emerging technologies like drones, IoT, and 

blockchain provide innovative solutions for real-time monitoring, data 

transparency, and automated insurance processing, and eventually trust between 

insurers and farmers. These advancements collectively optimize insurance 

 
122 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. 

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, pp. 785-794. 
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pricing strategies, ensuring more precise policy design and fairer compensation 

mechanisms. Ultimately, the convergence of data-driven models and 

technological innovations transforms agricultural insurance into a more resilient 

and adaptive system.  

 

The complete implementation of each machine learning model used in this study 

is available on GitHub at: 

https://github.com/bradickristina/agri-insurance.git. 
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