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Abstract: This paper investigates an idiosyncratic volatility spillover effect between the four agricultural futures — corn,
wheat, soybean, and rise. In order to avoid biased measurements of the volatilities, we use the Markov switching ge-
neralized autoregressive conditional heteroskedasticity (MS-GARCH) model. The created volatilities are imbedded
in the Bayesian quantile regression framework which can produce accurate quantile estimates. We report that soybean
and wheat receive relatively high levels of volatility shocks from the other markets, and that excludes soybean and whe-
at as primary investment assets in a portfolio. On the other hand, rice receives the lowest amount of volatility shocks
from all other agricultural futures. The reason could be the policy of rice price stability that is conducted by countries
in the Asia and Pacific region. This result favours rice futures, from the four commodities, as the primary asset in a port-
folio. All other futures are suitable to be an auxiliary asset in a portfolio with rice, because rice receives the weakest

volatility shocks spillover effect from the other three markets.

Keywords: bidirectional volatility spillovers; regime-switching volatilities; Monte Carlo estimation

The increased price volatility of the international
agricultural markets has become an important topic
in the last two decades. This is particularly true from
the food price crisis period in 2006—2007, at both con-
ceptual and empirical levels among scholars, traders
and politicians (Matoskova 2011; Gréfova and Srnec
2012). As a consequence of the increased volatility
in the agri-food markets, it quickly became apparent
that this volatility can easily transfer from one agricul-
tural market to another. Various authors tried to find
an explanation why this was happening. For instance,
Huang et al. (2012) asserted that one reason could be
a tremendous increase in the financialization of com-
modity futures markets, which started in the early-
2000s, since agricultural commodity markets became
more integrated due to globalisation. On the other
hand, Sanjuan-Lopez and Dawson (2017) listed three
possible hypotheses. Firstly, they argued that land al-
location for grains production is relatively fixed, and

because of that, shocks from one crop price may spill
over into others. Secondly, they pointed out that com-
modity futures markets are somewhat segmented
from other financial markets, such as stock markets,
which produces less downside risk. Consequently, in-
ternational investors who want to reduce risk via di-
versification on commodity futures markets could
increase the co-movement between agricultural com-
modity futures in the process of portfolio rebalancing.
The last reason is related to a market contagion. This
can result from herd behaviour, since information
about prices in one market can be transmitted im-
mediately to other markets electronically due to au-
tomated trading. Knowledge of the true nature
of volatility spillovers between commodity markets
represents an important issue for international inves-
tors since it affects their possible hedging strategies
and the pricing of commodity instruments (Kirkulak-
Uludag and Lkhamazhapov 2017).
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Generally speaking, volatility transmission in finan-
cial and commodity markets was a subject of attention
in relatively few papers, while the volatility spillover
effect between agricultural markets was even less re-
searched. The following rare papers studied this topic
in the field of agricultural commodities. For instance,
Beckmann and Czudaj (2014) investigated volatility
spill-over effect between corn, cotton, and wheat fu-
tures, using GARCH-in-mean vector autoregression
(VAR) model, and concluded that short-run volatil-
ity transmission process exists in the agricultural
futures markets. Sanjuan-Lopez and Dawson (2017)
researched futures markets for corn, soybeans, and
wheat. Their Baba, Engle, Kraft and Kroner (BEKK-
GARCH) findings showed that past wheat shocks af-
fect soybean volatility and vice versa; past corn shocks
affect wheat volatility; and past corn volatility affects
wheat volatility and vice versa. Hamadi et al. (2017)
examined the level of interconnectedness across
corn, wheat, soybeans and soybean oil in terms of re-
turn volatility spillover. They reported significant bi-
directional volatility spillover effects, and concluded
that there is more spillover from soybeans and soy-
bean oil markets to corn and wheat markets, than
the other way around.

Having in mind the aforementioned, the goal of this
study is to thoroughly investigate the idiosyncratic vol-
atility spillover effects between the four major agricul-
tural futures markets — corn, wheat, soybean, and rice.
We decided to analyse futures prices instead of spot
prices, since futures prices incorporate all available in-
formation by definition, and thus are more appropriate
for the volatility spillover measurement than real pric-
es (Qu and Xiong 2019). In this process, we especially
want to emphasize the way in which the idiosyncratic
dynamic volatility of the agricultural futures is meas-
ured. The reason why this issue should be addressed
lies in the fact that many empirical time-series are char-
acterized by the presence of structural breaks. Tradi-
tional GARCH class model is frequently used to model
conditional volatility, but it cannot recognize struc-
tural breaks in empirical time-series. If this is the case,
the sum of estimated GARCH coefficients is close to or
even exceeds one, according to Masood etal. (2017), and
this drawback implies estimation of a non-stationary
volatility. Frommel (2010) explained that this nuisance
leads to overestimation of volatility persistence and
misspecification of the GARCH model. In order to cir-
cumvent this problem and to measure conditional vol-
atility as accurately as possible, we use several GARCH
type models — simple GARCH, Glosten-Jagannathan-
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Runkle (GJRGARCH), exponential (EGARCH) and
Markov switching GARCH (MS-GARCH). The GJR-
GARCH and EGARCH models measure asymmetry
in the volatility, while the MS-GARCH model can cap-
ture the structural breaks endogenously. In particu-
lar, the MS-GARCH model combines the traditional
GARCH model with the Markov switching process,
and for our computation purposes, we apply the MS-
GARCH model of Gray (1996).

In addition, equally important for international in-
vestors is to distinguish the size of volatility spillo-
ver effects in different market conditions. In order
to address this issue, we follow Xiao et al. (2019) and
combine the conditional volatility time-series with
the quantile regression (QR) framework. To be more
specific, we use the Bayesian QR technique, which
is more sophisticated type of QR methodology, since
it uses the MCMC (Markov Chain Monte Carlo) algo-
rithm in the estimation process that produces exact in-
ference about the quantile parameters. In other words,
Bayesian QR methodology in comparison with the tra-
ditional ordinary least square (OLS) QR estimation ap-
proach decreases the length of the credible intervals
and increases accurateness of the quantile estimates.

By combining the MS-GARCH model and Bayes-
ian QR methodology, we put an emphasis on the reli-
ability of estimated QR parameters. Firstly, we avoid
biased measures of conditional volatilities employing
MS-GARCH model, and secondly, we produce accu-
rate and trustworthy QR parameters using MCMC al-
gorithm. To the best of our knowledge, this is the first
time that these two non-traditional and complex tech-
niques are mixed together in a single research process.

METHODOLOGY

Isolatingidiosyncratic volatility. Before we construct
the conditional volatilities, we first isolate the common
factor in the agricultural futures that is related to broad-
er market developments. In this way, we make a basis
to capture an idiosyncratic volatility that carries only
characteristic features of each examined market. In or-
der to properly decompose the returns to a market-
related component and an idiosyncratic component,
we refer to the paper of Bali and Cakici (2008). These
authors extracted idiosyncratic residuals by employing
a single factor model in the following way:

r;,t = C + ®rm,t + Si,t (1)

where: r, and r_ - returns of individual stock market (i)
and global market (m); ¢ — time.
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We proxy global market by the U.S. S&P500 index.
C and ® are common regression parameters, while
g, describes regression residuals that are free of noises
from the global market. These residuals are used to cre-
ate idiosyncratic volatilities in the next stage of our
computation process.

Markov switching GARCH model. In order to pre-
serve space, we present only econometric specification
of the Markov switching GARCH' model in this sub-
section. We assume an autoregressive AR(1) process
for the conditional mean of all selected agricultural
futures, with residuals of the model following the nor-
mal distribution €, | 1,_, ~ N(0,k, ), where: I,_,
mation set at time ¢ — 1 and 4, — time varying condi-
tional volatility. According to Frommel (2010), regime
switching models can switch some or all parameters
of the model according to the Markov process, which
is governed by a state variable (S). Czapkiewicz et al.
(2018) asserted that the state variable S, evolves ac-
cording to a first-order Markov chain, with transition
probability p, = Pr(S, = j|S, , =i). For our purposes,
we assume two possible states — low volatility and high
volatility regimes. The dynamics of this process is giv-
en by the transition matrix P, and p, — the probability
of switching from state 1 to state 2. These probabilities
are grouped together into a transition matrix according
to the Equation (2):

_ P Pxn )
p12 pZZ

If the regimes are stable, switching probabilities

should be relatively high. We set the conditional vari-

ance to follow a GARCH (1,1) process according
to the following equation:

— infor-

hz =0+ 0‘5,8?4 + Bsthm 3)

where: ®; — state dependent constant, whereas e, s, and
h,_, s are ARCH and GARCH effects under regime S,.
The non-negativity of /, is ensured by setting following
20,05 20 and f
tence in state i is measured by a, +J,.

restrictions: o > 0. Volatility persis-

However, it should be noted that GARCH model
estimation in a regime switching context with state-
dependent past conditional variances is unfeasible.
This happens because conditional variance depends
not only on the observable information set /, | and on
the current regime S, but also on all past states S, |,
which is essentially impossible to estimate. There-
fore, in order to circumvent this shortcoming, we use
the Markov switching GARCH model of Gray (1996)
who proposed to integrate out the unobserved re-
gime path S, in GARCH term, using the conditional
expectation of the past variance. According to Mar-
cucci (2005), Gray (1996) used information observable
at time ¢ — 2 to integrate out the unobserved regimes
as in the Equation (4):

+

(1-
[pmuu (1- pm)( 52)1)}2

where: j = 1, 2; MEj) — conditional mean or location

parameter; and E, , — expected value of second lag.

To estimate the model we use the maximum likeli-
hood methodology, as follows in Equation (5) below.
In Equation (5) : L — log likelihood function; r, —

Bayesian quantile regression. After creating the re-
gime switching conditional volatilities, we insert

log-returns.

these time-series in the Bayesian quantile regression
framework? In its original concept, QR methodol-
ogy extends the mean regression model to conditional
quantiles of the response variable. Accordingly, this
technique provides a more detailed view of the inter-
link between the dependent variable and the covari-
ates, because it can estimate how a set of covariates
affects different parts of the distribution of regressand
(Zivkov et al. 2019). QR methodology has been found
appealing by many researchers from various theoreti-
cal disciplines (Dybczak and Galus¢ak 2013; Maestri
2013; Zivkov et al. 2014; Vilerts 2018).

1 (n-m,) 1] ()
L= Ztl I:Pu\/ T pr{ 2h1z }Jr(l_p”)\/zl‘lh% pr{ 2h2z }:| (5)

!Markov switching GARCH model is estimated via “MSGARCH” package in “R” software.

?Bayesian quantile parameters were calculated via “bayesQR” package in “R” software.
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In order to explain the Bayesian QR methodology,
we start with the standard linear model as in the Equa-
tion (6):

yi:“(xi)+85 (6)
where: y, and x; — both continuous variables.

In Equation (6), each of the selected four agricul-
tural futures can be either the dependent or the inde-
pendent variable, because all agricultural futures can
either receive or transmit volatility shocks. According
to Benoit and van den Poel (2017), the regression coef-
ficient in case of all quantiles can be found by solving
the Equation (7):

[g(r)=argminz;pr(yi—x,/[3); BeR (7)

where: te (0,1) — any quantile of interest, while
ol (Z) = z(r - I(z < 0)) ;}nd I() stand for the indicator
function. The quantile [3(6) is called the T regression
quantile; while in the case where: T = 0.5, it corresponds
to the median regression.

The QR parameters are then estimated by the con-
ventional Bayesian procedure, which implies the usage
of the MCMC algorithm (Ari et al. 2019). This proce-
dure generates exact estimates of the quantile param-
eters B(o) Crucial advantage of the Bayesian quantile
regression as compared to the conventional QR ap-
proach is the fact that 95% Bayesian credible interval
contains the true parameter value in 95% of the time.

DATASET AND CREATION OF REGIME-
DEPENDENT CONDITIONAL
VOLATILITIES

This paper comprises daily closing prices of four
agricultural futures (corn, soybean, wheat, and rice),
which are traded on Chicago Mercantile Exchange
CME Group. All closing prices of the selected futures
are transformed into log returns according to the ex-

https://doi.org/10.17221/127/2019-AGRICECON

pression: r,, = 100 x (P, /P, )); where: P, — the closing
price of the particular assets. The sample ranges from
January 1, 2007 to September 30, 2019, and all the time-
series are collected from the Investing.com website
(Investing.com 2019). All collected time-series are syn-
chronized according to the existing observations.

First task in our computational process is to con-
struct conditional volatility series from idiosyncratic
residuals as accurately as possible. Therefore, we need
to find out which GARCH specification fits the empiri-
cal agricultural time-series the best. Table 1 presents
Akaike information criterion (AIC) values for the esti-
mated GARCH models, and it can be seen that the MS-
GARCH model has an upper hand in all four cases.
This means that all four agricultural time-series are
“polluted” with multiple structural breaks, and MS-
GARCH model can successfully recognize this intrin-
sic feature. In order to make a parallel presentation
of the best and worst fitting models, we show in Table 2
the estimated parameters for the MS-GARCH model
and the single regime GARCH model, with the latter
serving as a benchmark. It is obvious that the sim-
ple GARCH model has higher persistence (ax + P)
of the variance, comparing to this persistence in both
regimes of the MS-GARCH model in all the cases.

Table 2 discloses that all the futures are dominantly
in low volatility regime, which means that low volatil-
ity regime is more stable and lasts longer. This is veri-
fied by their values of regime probabilities (P, and P,,)
and also by Figure 1. As can be seen, the probability
of staying in low volatility regime for these three fu-
tures is around 90%, while only in around 10% of cases
they are in high volatility regime.

Figure 2 presents plots that couple the daily-based
dynamic volatilities derived from the single regime
GARCH and MS-GARCH models. Merely from
a visual inspection of all the plots it can be concluded
that the single regime volatilities have higher mean,
standard deviation, and kurtosis values than the re-
gime-switching counterparts.

Table 1. Akaike information criterion (AIC) values for four GARCH specifications

Corn Wheat Soybean Rice
GARCH 4.0198 4.2209 3.5178 3.6251
GJRGARCH 4.0197 4.2197 3.5170 3.6241
EGARCH 4.0095 4.2194 3.5161 3.6209
MS-GARCH 3.9554 4.1287 3.4784 3.5996

GARCH - generalized autoregressive conditional heteroscedasticity; GGRGARCH — Glosten-Jagannathan-Runkle GARCH;
EGARCH - exponential GARCH; MS-GARCH - Markov switching GARCH

Source: Authors’ calculation
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Table 2. Parameter estimates of the GARCH and MS-GARCH models

Corn Wheat Soybean Rice
c 0.039%* 0.050° 0.023%** 0.152
« 0.078 0.0677* 0.063** 0.100%*
GARCH B 0.918% 0.932%+ 0.928"* 0.892++*
a+p 0.996 0.999 0.991 0.992
LL 6 365.4 6 684.1 -5570.7 —5740.3
¢ 0.036*** 0.023%* 0.012%** 0.000
regime 1- low @, 0.062** 0.024%% 0.028* 0.005*
volatility regime B, 0.913% 0.960%* 0.951%+ 0.987
a, +B, 0.975 0.984 0.979 0.992
¢, 4.244% 3.676 5.875% 0.176**
MS-GARCH o, 0.214* 0.291* 0.284 0.069*
’ . B, 0.781* 0.677+* 0.691 0.909+**
if)lg;“ﬂftj r_e;‘f; a,+B, 0.995 0.988 0.975 0.978
P, 0.96 0.92 0.89 0.90
P, 0.04 0.08 0.11 0.10
IL —6212.5 6 593.9 5 458.4 -5 671.0

***P<0.01,**P < 0.05, *P < 0.1; GARCH - generalized autoregressive conditional heteroscedasticity; MS-GARCH — Markov
switching GARCH;. P, and P,, are probabilities of staying in regime 1 and regime 2 in MS-GARCH model; LL — log-likelihood

Source: Authors’ calculation

Table 3 reveals descriptive statistics of the GARCH
and MS-GARCH idiosyncratic conditional vola-
tilities, and it can be noticed that all four moments
of conditional volatilities are improved significantly

Corn — stage 1

in the MS-GARCH model, compared to the values
in the GARCH model. Mean and deviation from
the mean are lower in the MS-GARCH model. In ad-
dition, all kurtosis coeflicients exceed heavily the ref-

Wheat — stage 1
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Figure 1. Smooth probabilities of low volatility regime for the agricultural futures
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Figure 2. Calculated dynamic conditional volatilities of the agricultural futures

Y-axis — the value of conditional volatility of each agricultural commodity; X-axis — the observed period; GARCH - gen-
eralized autoregressive conditional heteroscedasticity; MS-GARCH — Markov switching GARCH

Source: Authors’ calculation

erence value of the normal distribution (equal to 3),
which indicates significant presence of extreme values
and outliers in distribution of conditional volatilities.
However, in the MS-GARCH model, kurtosis values
are significantly lower. Figure 2 undoubtedly indi-
cates that all single regime volatilities are permeated
by high peaks throughout the sample, and this charac-
terizes the all agricultural futures. In addition, Table 3
shows that all volatility time-series are heavily skewed
to the right, which is expected, since we work with
volatilities. These facts justify the use of QR method,
because the MCMC QR estimator is a powerful tool
in recognizing the deviations from normality and
it gives reliable parameter estimates in the extreme
value environment.

We can check the validity of the estimated Bayes-
ian QR parameter by using a visual inspection
of the convergence of the MCMC chains, which shows
the evolution of the MCMC draws over the iterations.
We use 6 000 iterations for our computations. Figure 3
portrays the trace-plots of the MCMC chain of me-
dian quantiles [?)(6) =0.5 of the selected agricultural
futures. It can be seen that all trace-plots have a good
performance, which means that the effect of the ini-
tial values of the MCMC chains wears off very rapidly,
while the MCMC sampler quickly moves to the sta-
tionary distribution. In addition, trace-plots are very
similar across all quantiles, thus we present only me-
dian quantiles trace plots in Figure 3. All other trace
plots can be obtained by request. These findings sug-

Table 3. Descriptive statistics of the GARCH and MS-GARCH conditional volatilities

GARCH MS-GARCH
mean S.D. skewness kurtosis B mean S.D. skewness kurtosis B
Corn 4.259 4.946 7.997 98.670 1242331.0 1.916 0.621 3.425 24.558  67562.3
Soybean 2.663 3.724 8.177 94.402 1138440.0 1.485 0.487 4.231 35.779 151 329.9
Wheat 4.690 3.300 3.110 17.356 323209 2.062 0.583 2.390 14.406 20195.4
Rice 2.401 1.361 5.594 59.217 433 818.4 1.503 0.318 1.270 7.504 3530.8

GARCH - generalized autoregressive conditional heteroscedasticity; MS-GARCH — Markov switching GARCH;

JB — Jarque-Bera test of normality
Source: Authors’ calculation

220


https://www.agriculturejournals.cz/web/agricecon/

Agricultural Economics — Czech, 66, 2020 (5): 215-225 Original Paper
https://doi.org/10.17221/127/2019-AGRICECON
Corn - trace plot Wheat — trace plot
1.0 1
o 081
e 0.9 1
% 0.6
g 0.8 1
;_qa) 0.4 071
= 0.2 -
0.6
Soybean - trace plot Rice — trace plot
o 19] 104
E 0.9 -
g 0.9 A 1 ‘\ 0.8 1
E 07
T 087 0.6
= 07 0.5
’ 0.4
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Iteration Iteration

Figure 3. Trace plots for median quantile of the selected agricultural futures

Y-axis depicts the value of calculate trace plots for the median quantile; X-axis stands for the number of iterations

in Markov chain
Source: Authors’ calculation

gest that all estimated Bayesian quantile parameters
are highly statistically significant and reliable.

RESEARCH RESULTS

This section presents the results of an idiosyncratic
volatility spillover effect between the four agricul-
tural futures in different market conditions. Since we
analyse volatility spillovers, our quantiles represent
the conditions of low volatility (left-tail quantiles),
moderate volatility (median quantile) and high vola-
tility (right-tail quantiles). Our goal is to check is there
a bidirectional volatility transmission effect among
the all selected agricultural futures. This is a viable
assumption, because futures markets are highly inte-
grated and investors can easily transfer from one mar-
ket to another due to electronic automated trading.
Owing to this fact, volatility shocks can easily transfer
across the markets. Table 4 contains the pairwise es-
timated Bayesian quantile parameters, while Figure 4
presents their graphical illustrations.

The results in Table 4 are heterogeneous and they in-
dicate that quantile estimates grow larger with the in-
crease of quantiles, which is expected. This means
that stronger volatility spillover effect is detected
in the periods of market turmoil, when volatility is in-

creased. In particular, we find very slim volatility spill-
over effect from corn to soybean when volatility in soy-
bean market is very low, and it amounts 5%. However,
when volatility in soybean market is high or very high,
which is represented by 0.75" and 0.95"" quantiles,
the rise of volatility by 100% in corn market transmits
to soybean market by 71% and 130%, respectively.
When the nexus is reversed, we detect relatively high
risk spillover effect from soybean to corn even in very
low volatility conditions in corn market, amounting
to 43%, and this influence gradually increases with
the rise of volatility in corn market, reaching 88%
and 73% when volatility is at its peak. These results
are in line with the paper of Gozgor and Memis (2015)
who reported strong bidirectional volatility transmis-
sion between the soybeans and corn markets. They
explained that strong nexus between corn and soy-
bean probably comes from the fact that both corn and
soybean are used in the biofuel production.
Wheathasstrongerimpacton corninverylowvolatility
conditions (19%) compared to the corn —> wheat trans-
mission effect, where: corn impacts wheat with 2.5%.
On the other hand, corn has stronger risk spillover ef-
fect on wheat in 0.95" quantile than the other way
around. These findings are similar to the previous re-
lation, i.e. the corn-soybean connection. In addition,
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Table 4. Bayesian quantile estimates for the volatility transmission effect between the agricultural futures

Bayesian quantile estimates

0.05™ 0.25™ 0.5" 0.75" 0.95™" 0.05™ 0.25™ 0.5™" 0.75™ 0.95™"
very low low moderate high very high very low low moderate high very high
corn —> soybean soybean —> corn
0.052 0.184 0.430 0.711 1.300 0.428 0.589 0.709 0.876 0.729
corn —> wheat wheat —> corn
0.025 0.420 0.645 0.738 1.261 0.193 0.401 0.617 0.795 0.744
corn —> rice rice —> corn
0.035 0.112 0.198 0.245 0.314 0.187 0.416 0.454 0.619 0.921
wheat —> soybean soybean —> wheat
0.082 0.200 0.359 0.566 0.966 0.190 0.486 0.692 0.880 1.030
wheat —> rice rice —> wheat
0.096 0.211 0.298 0.362 0.331 0.393 0.541 0.750 0.971 1.130
soybean —> rice rice — soybean
0.147 0.225 0.259 0.387 0.491 0.105 0.209 0.390 0.675 1.468

Source: Authors’ calculation
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we find that soybean has higher volatility spillover effect
on wheat in all quantiles, without exception, compared
to how wheat affects soybean. Regarding the interlink
between corn, soybean, and wheat, our results coincide
very well with the study of Hamadi et al. (2017) who re-
ported stronger spillover effect running from soybeans
to corn and wheat than conversely. According to Ta-
ble 4, corn, soybean, and wheat are the agricultural com-
modities that receive and transmit relatively high levels
of volatility shocks among themselves. Baldi et al. (2016)
offered a probable explanation for this phenomenon.
They asserted that the reason could lie in so-called com-
modity financialization phenomenon, which has been
caused by a massive increase in investments in com-
modities in the last two decades. These activities play
an important role in investors’ portfolio diversification
strategies, but also increase integration between com-
modity markets, rise levels of correlation, and induce
volatility spillovers between markets.

On the other hand, we find interesting results with
regards to rice futures. Table 4 suggests that rice fu-
tures receive disproportionately lower level of risk
transmission from other three agricultural fu-
tures, while the effect of rice on corn, soybean, and
wheat is relatively high, and it particularly applies
for rice — wheat and rice — soybean pairs. In other
words, corn has the lowest volatility impact on rice,
whereas wheat and soybean follow, and this effect
amounts to 31, 33 and 49%, respectively, in very high
volatility conditions. In moderate volatility condi-
tions, this impact is significantly smaller, amounting
20, 30 and 26% for 100% volatility increase in corn,
soybean and wheat markets, respectively. It can be
seen that this influence is far lower than the size
of volatility spillover effects which other three agricul-
tural futures experience between each other and from
rice as well. To be more specific, some of the highest
volatility transmissions come from the rice market,
and in the highest quantile, rice idiosyncratic volatil-
ity shocks impact corn with 92%, wheat with 113%
and soybean with 147%. In moderate market condi-
tions, this effect is also relatively high and amounts
to 45, 75 and 39% regarding the rice — corn,
rice — wheat and rice — soybean relations, respec-
tively. According to our results, it seems that rice fu-
tures are the most resistant on the volatility shocks
that originate from other agricultural markets. Tim-
mer (2014) offered a possible explanation why rice
prices are relatively stable throughout the time. He ar-
gued that rice remains a major food source for most
of the population in the Asia and Pacific region.

Therefore, owing to the rapid economic growth, most
countries in the Asia and Pacific region became capa-
ble of conducting aggressive food price stabilisation
policies, which provide food to the poor. According
to this author, these policies make rise prices resilient
to external shocks, which also includes volatility spill-
overs from other agricultural markets.

The implications of the findings could be as fol-
lows. First, volatility spillover effect reflects the ar-
rival of information in the market, according to Ross
(1989). We find that soybean and wheat futures mar-
kets endure the most intense spillover effect from
other markets, which means that these two markets
receive the highest rate of information flow from
the other markets. This high sensitivity of wheat and
soybean to the shocks from other markets prevents
these commodities from being primary investment
instruments in a portfolio. On the other hand, the vol-
atility transmission effect can also carry a message
which commodities are suitable to combine, because
Lee et al. (2014) asserted that if volatility from one fi-
nancial market transmits to another in high intensity,
then the assets from such markets cannot be included
in the same portfolio with the other asset. This means
that corn cannot be coupled with soybean, when corn
is an auxiliary asset in a portfolio. The same applies
for rice when this asset plays an auxiliary role in port-
folios with corn, wheat and soybean. However, when
rice stands as a primary asset in a portfolio, then corn,
wheat and soybean could play an auxiliary role, be-
cause rice futures receive the lowest amount of vola-
tility shocks from these three markets.

CONCLUSION

This paper tries to determine the level of idiosyncrat-
ic volatility spillover effects between the major agricul-
tural futures — corn, soybean, wheat, and rice. In or-
der to perform this task, we first isolate the common
factor in the agricultural futures markets that is re-
lated to a broader market, and then use the MS-
GARCH model to construct idiosyncratic regime
switching conditional volatilities. This model produces
unbiased and accurate measure of uncertainties in the
agricultural futures markets. In the next step, we em-
bed these regime-switching volatilities in the Bayes-
ian QR framework, which is also a robust methodology
in terms of reliability of results.

According to our findings, the spillover effect
is the strongest in high volatility conditions in all mar-
kets without exception. Soybean and wheat are the ag-
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ricultural commodities that receive relatively high levels
of volatility shocks from the other markets. These find-
ings exclude soybean and wheat as primary investment
assets in a portfolio. On the other hand, rice receives
the lowest amount of volatility shocks from all other ag-
ricultural futures. The reason could be the policy of rice
price stability that is conducted by countries in the Asia
and Pacific region, since rice is a major food source
for most of the population in this region. This result fa-
vours rice futures, from all four commodities, as the pri-
mary asset in a portfolio. Due to the fact that rice re-
ceives the weakest volatility shocks spillover effect from
the other three markets, all other futures are suitable
to be an auxiliary asset in a portfolio with rice.

Our results could be useful for various market par-
ticipants and policymakers who analyse and trade
in the agricultural markets, and who design their
portfolios with the agricultural futures. Also, our pa-
per gives a starting point for the future research,
in terms of intense and origins of the agricultural
market volatilities. In addition, future studies might
address the connection between speculators’ activi-
ties in the agricultural markets and the size of volatil-
ity in these markets.
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