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The increased price volatility of  the international 
agricultural markets has become an  important topic 
in the last two decades. This is particularly true from 
the food price crisis period in 2006–2007, at both con-
ceptual and empirical levels among scholars, traders 
and politicians (Matoškova 2011; Grófová and Srnec 
2012). As  a  consequence of  the increased volatility 
in the agri-food markets, it quickly became apparent 
that this volatility can easily transfer from one agricul-
tural market to another. Various authors tried to find 
an explanation why this was happening. For instance, 
Huang et al. (2012) asserted that one reason could be 
a tremendous increase in the financialization of com-
modity futures markets, which started in  the early-
2000s, since agricultural commodity markets became 
more integrated due to  globalisation. On  the  other 
hand, Sanjuan-Lopez and Dawson (2017) listed three 
possible hypotheses. Firstly, they argued that land al-
location for grains production is relatively fixed, and 

because of that, shocks from one crop price may spill 
over into others. Secondly, they pointed out that com-
modity futures markets are somewhat  segmented 
from other financial markets, such as stock markets, 
which produces less downside risk. Consequently, in-
ternational investors who want to reduce risk via di-
versification on commodity futures markets could 
increase the co-movement between agricultural com-
modity futures in the process of portfolio rebalancing. 
The last reason is related to a market contagion. This 
can result from herd behaviour, since information 
about prices in  one market can be transmitted im-
mediately to other markets electronically due to au-
tomated trading. Knowledge of  the true nature 
of  volatility spillovers between commodity markets 
represents an important issue for international inves-
tors since it  affects their possible hedging strategies 
and the pricing of commodity instruments (Kirkulak-
Uludag and Lkhamazhapov 2017).
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Generally speaking, volatility transmission in finan-
cial and commodity markets was a subject of attention 
in relatively few papers, while the volatility spillover 
effect between agricultural markets was even less re-
searched. The following rare papers studied this topic 
in the field of agricultural commodities. For instance, 
Beckmann and Czudaj (2014) investigated volatility 
spill-over effect between corn, cotton, and wheat fu-
tures, using GARCH-in-mean vector autoregression 
(VAR) model, and concluded that  short-run volatil-
ity transmission process exists in  the agricultural 
futures markets. Sanjuan-Lopez and Dawson (2017) 
researched futures markets for  corn, soybeans, and 
wheat. Their Baba, Engle, Kraft and Kroner (BEKK-
GARCH) findings showed that past wheat shocks af-
fect soybean volatility and vice versa; past corn shocks 
affect wheat volatility; and past corn volatility affects 
wheat volatility and vice versa. Hamadi et  al. (2017) 
examined the  level of  interconnectedness across 
corn, wheat, soybeans and soybean oil in terms of re-
turn volatility spillover. They reported significant bi-
directional volatility spillover effects, and concluded 
that  there is  more spillover from soybeans and soy-
bean oil markets to  corn and wheat  markets, than 
the other way around.

Having in mind the aforementioned, the goal of this 
study is to thoroughly investigate the idiosyncratic vol-
atility spillover effects between the four major agricul-
tural futures markets – corn, wheat, soybean, and rice. 
We decided to  analyse futures prices instead of  spot 
prices, since futures prices incorporate all available in-
formation by definition, and thus are more appropriate 
for the volatility spillover measurement than real pric-
es (Qu and Xiong 2019). In this process, we especially 
want to emphasize the way in which the idiosyncratic 
dynamic volatility of  the agricultural futures is meas-
ured. The  reason why this issue should be addressed 
lies in the fact that many empirical time-series are char-
acterized by  the presence of structural breaks. Tradi-
tional GARCH class model is frequently used to model 
conditional volatility, but it cannot recognize struc-
tural breaks in empirical time-series. If this is the case, 
the sum of estimated GARCH coefficients is close to or 
even exceeds one, according to Masood et al. (2017), and 
this drawback implies estimation of  a  non-stationary 
volatility. Frommel (2010) explained that this nuisance 
leads to  overestimation of  volatility persistence and 
misspecification of the GARCH model. In order to cir-
cumvent this problem and to measure conditional vol-
atility as accurately as possible, we use several GARCH 
type models – simple GARCH, Glosten-Jagannathan-

Runkle (GJRGARCH), exponential (EGARCH) and 
Markov switching GARCH (MS-GARCH). The  GJR-
GARCH and EGARCH  models measure asymmetry 
in the volatility, while the MS-GARCH model can cap-
ture the  structural breaks endogenously. In  particu-
lar, the  MS-GARCH  model combines the  traditional 
GARCH  model with the  Markov switching process, 
and for our computation purposes, we apply the MS-
GARCH model of Gray (1996).

In addition, equally important for  international in-
vestors is to  distinguish the  size of  volatility spillo-
ver effects in  different market conditions. In  order 
to address this issue, we follow Xiao et al. (2019) and 
combine the  conditional volatility time-series with 
the  quantile regression (QR) framework. To  be more 
specific, we use the  Bayesian QR  technique, which 
is more sophisticated type of QR methodology, since 
it uses the MCMC (Markov Chain Monte Carlo) algo-
rithm in the estimation process that produces exact in-
ference about the quantile parameters. In other words, 
Bayesian QR methodology in comparison with the tra-
ditional ordinary least square (OLS) QR estimation ap-
proach decreases the  length of  the credible intervals 
and increases accurateness of the quantile estimates.

By  combining the  MS-GARCH  model and Bayes-
ian QR methodology, we put an emphasis on the reli-
ability of  estimated QR  parameters. Firstly, we avoid 
biased measures of  conditional volatilities employing 
MS-GARCH  model, and secondly, we produce accu-
rate and trustworthy QR parameters using MCMC al-
gorithm. To the best of our knowledge, this is the first 
time that these two non-traditional and complex tech-
niques are mixed together in a single research process.

METHODOLOGY

Isolating idiosyncratic volatility. Before we construct 
the conditional volatilities, we first isolate the common 
factor in the agricultural futures that is related to broad-
er market developments. In  this way, we make a basis 
to  capture an  idiosyncratic volatility that  carries only 
characteristic features of each examined market. In or-
der to  properly decompose the  returns to  a  market-
related component and an  idiosyncratic component, 
we refer to  the paper of Bali and Cakici (2008). These 
authors extracted idiosyncratic residuals by employing 
a single factor model in the following way:

, , ,i t m t i tr C r= + Θ + ε  (1)

where: ri,t and rm,t – returns of individual stock market (i) 
and global market (m); t – time.
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We proxy global market by  the U.S. S&P500 index. 
C  and  Θ are common regression parameters, while 
εi,t describes regression residuals that are free of noises 
from the global market. These residuals are used to cre-
ate idiosyncratic volatilities in  the next stage of  our 
computation process.

Markov switching GARCH model. In order to pre-
serve space, we present only econometric specification 
of the Markov switching GARCH1 model in this sub-
section. We assume an  autoregressive AR(1) process 
for  the conditional mean of  all selected agricultural 
futures, with residuals of the model following the nor-
mal distribution ( )1| ~ 0, ,t t itI N h−ε  where: It–1 – infor-
mation set at time t – 1 and hit – time varying condi-
tional volatility. According to Frommel (2010), regime 
switching models can switch some or all parameters 
of the model according to the Markov process, which 
is governed by a state variable (St). Czapkiewicz et al. 
(2018) asserted that  the state variable St evolves ac-
cording to a first-order Markov chain, with transition 
probability 1( | ).ij t tp Pr S j S i−= = =  For  our purposes, 
we assume two possible states – low volatility and high 
volatility regimes. The dynamics of this process is giv-
en by the transition matrix P, and pi – the probability 
of switching from state 1 to state 2. These probabilities 
are grouped together into a transition matrix according 
to the Equation (2):

11 21

12 22

p p
p p
 

=  
  

P  (2)

If the regimes are stable, switching probabilities 
should be relatively high. We set the conditional vari-
ance to  follow a  GARCH  (1,1) process according 
to the following equation:

2
1 1t t ttt S S tSh h− −ε + β= ω + α  (3)

where: 
tSω  – state dependent constant, whereas  2

1, tt S−ε  and 
1, tt Sh −  are ARCH and GARCH effects under regime St. 

The non-negativity of ht is ensured by setting following 
restrictions: 0, 0 and 0.

t t tS S Sω ≥ α ≥ β ≥  Volatility persis-
tence in state i is measured by .i iα +β

However, it should be noted that  GARCH  model 
estimation in  a  regime switching context with state-
dependent past conditional variances is unfeasible. 
This happens because conditional variance depends 
not only on the observable information set It–1 and on 
the  current regime  St, but also on all past states  St–1, 
which is essentially impossible to  estimate. There-
fore, in order to circumvent this shortcoming, we use 
the Markov switching GARCH model of Gray (1996) 
who proposed to  integrate out the  unobserved re-
gime path St–1 in GARCH term, using the conditional 
expectation of  the past variance. According to  Mar-
cucci (2005), Gray (1996) used information observable 
at time t – 2 to integrate out the unobserved regimes 
as in the Equation (4):
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 (4)

where: j  =  1,  2; ( )j
tµ   –  conditional mean or location 

parameter; and Et–2 – expected value of second lag.

To estimate the model we use the maximum likeli-
hood methodology, as follows in Equation (5) below.
In Equation (5) : L – log likelihood function; rt – log-returns.

Bayesian quantile regression. After creating the re-
gime switching conditional volatilities, we insert 
these time-series in  the Bayesian quantile regression 
framework2. In  its original concept, QR  methodol-
ogy extends the mean regression model to conditional 
quantiles of  the response variable. Accordingly, this 
technique provides a more detailed view of the inter-
link between the  dependent variable and the  covari-
ates, because it can estimate how a  set of  covariates 
affects different parts of the distribution of regressand 
(Živkov et al. 2019). QR methodology has been found 
appealing by many researchers from various theoreti-
cal disciplines (Dybczak and Galuščak 2013; Maestri 
2013; Živkov et al. 2014; Vilerts 2018).

2Bayesian quantile parameters were calculated via “bayesQR” package in “R” software.

1Markov switching GARCH model is estimated via “MSGARCH” package in “R” software.
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In order to explain the Bayesian QR methodology, 
we start with the standard linear model as in the Equa-
tion (6):

( )i i iy x=µ + ε  (6)

where: yi and xi – both continuous variables.

In Equation (6), each of  the selected four agricul-
tural futures can be either the dependent or the inde-
pendent variable, because all agricultural futures can 
either receive or transmit volatility shocks. According 
to Benoit and van den Poel (2017), the regression coef-
ficient in case of all quantiles can be found by solving 
the Equation (7):

( ) ( )´
1

ˆ argmin ;n
i li

y x
= τ

β τ = ρ − β β∈ℜ∑  (7)

where: ( )0, 1τ∈   –  any quantile of  interest, while 
( ) ( )( )0z z I zτρ = τ − <  and ( )I ⋅  stand for the indicator 

function. The quantile  ( )ˆ ôβ  is called the  th  τ   regression 
quantile; while in the case where: 0.5,τ =  it corresponds 
to the median regression.

The QR parameters are then estimated by the con-
ventional Bayesian procedure, which implies the usage 
of the MCMC algorithm (Ari et al. 2019). This proce-
dure generates exact estimates of the quantile param-
eters  ( )ˆ ô .β  Crucial advantage of the Bayesian quantile 
regression as  compared to  the conventional QR  ap-
proach is the fact that 95% Bayesian credible interval 
contains the true parameter value in 95% of the time.

DATASET AND CREATION OF  REGIME-
DEPENDENT CONDITIONAL 
VOLATILITIES

This paper comprises daily closing prices of  four 
agricultural futures (corn, soybean, wheat, and rice), 
which are traded on Chicago Mercantile Exchange 
CME  Group. All closing prices of  the selected futures 
are transformed into log returns according to  the ex-

pression: ri,t = 100 × (Pi,t /Pi,t–1); where: Pi,t – the closing 
price of  the particular assets. The sample ranges from 
January 1, 2007 to September 30, 2019, and all the time-
series are collected from the  Investing.com website 
(Investing.com 2019). All collected time-series are syn-
chronized according to the existing observations.

First task in  our computational process is to  con-
struct conditional volatility series from idiosyncratic 
residuals as accurately as possible. Therefore, we need 
to find out which GARCH specification fits the empiri-
cal agricultural time-series the  best. Table  1 presents 
Akaike information criterion (AIC) values for the esti-
mated GARCH models, and it can be seen that the MS-
GARCH  model has  an upper hand in  all four cases. 
This means that  all four agricultural time-series are 
“polluted” with multiple structural breaks, and MS-
GARCH model can successfully recognize this intrin-
sic feature. In  order to  make a  parallel presentation 
of the best and worst fitting models, we show in Table 2 
the estimated parameters for  the MS-GARCH model 
and the single regime GARCH model, with the  latter 
serving as  a  benchmark. It is obvious that  the  sim-
ple GARCH  model has  higher persistence (α  +  β) 
of the variance, comparing to this persistence in both 
regimes of the MS-GARCH model in all the cases.

Table 2 discloses that all the futures are dominantly 
in low volatility regime, which means that low volatil-
ity regime is more stable and lasts longer. This is veri-
fied by their values of regime probabilities (P11 and P22) 
and also by  Figure  1. As  can be seen, the  probability 
of  staying in  low volatility regime for  these three fu-
tures is around 90%, while only in around 10% of cases 
they are in high volatility regime.

Figure 2 presents plots that couple the daily-based 
dynamic volatilities derived from the  single regime 
GARCH and MS-GARCH  models. Merely from 
a visual inspection of all the plots it can be concluded 
that  the single regime volatilities have higher mean, 
standard deviation, and kurtosis values than the  re-
gime-switching counterparts.

Table 1. Akaike information criterion (AIC) values for four GARCH specifications

Corn Wheat Soybean Rice
GARCH 4.0198 4.2209 3.5178 3.6251
GJRGARCH 4.0197 4.2197 3.5170 3.6241
EGARCH 4.0095 4.2194 3.5161 3.6209
MS-GARCH 3.9554 4.1287 3.4784 3.5996

GARCH – generalized autoregressive conditional heteroscedasticity; GJRGARCH – Glosten-Jagannathan-Runkle GARCH; 
EGARCH – exponential GARCH; MS-GARCH – Markov switching GARCH
Source: Authors’ calculation
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Table 3 reveals descriptive statistics of the GARCH 
and MS-GARCH idiosyncratic conditional vola-
tilities, and it can be noticed that  all four moments 
of  conditional volatilities are improved significantly 

in  the MS-GARCH  model, compared to  the values 
in  the GARCH  model. Mean and deviation from 
the mean are lower in the MS-GARCH model. In ad-
dition, all kurtosis coefficients exceed heavily the ref-

Table 2. Parameter estimates of the GARCH and MS-GARCH models

Corn Wheat Soybean Rice

GARCH

c 0.039*** 0.050* 0.023*** 0.152**
α 0.078*** 0.067*** 0.063*** 0.100***
β 0.918*** 0.932*** 0.928*** 0.892***

α + β 0.996 0.999 0.991 0.992
LL –6 365.4 –6 684.1 –5 570.7 –5 740.3

MS-GARCH

regime 1– low 
volatility regime

c1 0.036*** 0.023*** 0.012*** 0.000
α1 0.062*** 0.024*** 0.028*** 0.005*
β1 0.913*** 0.960*** 0.951*** 0.987

α1 + β1 0.975 0.984 0.979 0.992

regime 2 – high 
volatility regime

c2 4.244** 3.676** 5.875*** 0.176**
α2 0.214* 0.291* 0.284 0.069*
β2 0.781*** 0.677*** 0.691 0.909***

α2 + β2 0.995 0.988 0.975 0.978
P11 0.96 0.92 0.89 0.90
P22 0.04 0.08 0.11 0.10
LL –6 212.5 –6 593.9 –5 458.4 –5 671.0

***P < 0.01, **P < 0.05, *P < 0.1; GARCH – generalized autoregressive conditional heteroscedasticity; MS-GARCH – Markov 
switching GARCH;. P11 and P22 are probabilities of staying in regime 1 and regime 2 in MS-GARCH model; LL – log-likelihood
Source: Authors’ calculation

Figure 1. Smooth probabilities of low volatility regime for the agricultural futures

Source: Authors’ calculation
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erence value of  the normal distribution (equal  to 3), 
which indicates significant presence of extreme values 
and outliers in distribution of conditional volatilities. 
However, in  the MS-GARCH model, kurtosis values 
are significantly lower. Figure  2 undoubtedly indi-
cates that all single regime volatilities are permeated 
by high peaks throughout the sample, and this charac-
terizes the all agricultural futures. In addition, Table 3 
shows that all volatility time-series are heavily skewed 
to  the right, which is expected, since we work with 
volatilities. These facts justify the use of QR method, 
because the MCMC QR estimator is a powerful tool 
in  recognizing the  deviations from normality and 
it  gives reliable parameter estimates in  the extreme 
value environment.

We can check the  validity of  the estimated Bayes-
ian  QR  parameter by  using a  visual inspection 
of the convergence of the MCMC chains, which shows 
the evolution of the MCMC draws over the iterations. 
We use 6 000 iterations for our computations. Figure 3 
portrays the  trace-plots of  the MCMC  chain of  me-
dian quantiles ( )ˆ ô 0.5β =  of  the selected agricultural 
futures. It can be seen that all trace-plots have a good 
performance, which means that  the effect of  the ini-
tial values of the MCMC chains wears off very rapidly, 
while the  MCMC  sampler quickly moves to  the sta-
tionary distribution. In  addition, trace-plots are very 
similar across all quantiles, thus we present only me-
dian quantiles trace plots in  Figure  3. All other trace 
plots can be obtained by request. These findings sug-

Figure 2. Calculated dynamic conditional volatilities of the agricultural futures

Y-axis – the value of conditional volatility of each agricultural commodity; X-axis – the observed period; GARCH – gen-
eralized autoregressive conditional heteroscedasticity; MS-GARCH – Markov switching GARCH
Source: Authors’ calculation
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Table 3. Descriptive statistics of the GARCH and MS-GARCH conditional volatilities

GARCH MS-GARCH
mean S.D. skewness kurtosis JB mean S.D. skewness kurtosis JB

Corn 4.259 4.946 7.997 98.670 1 242 331.0 1.916 0.621 3.425 24.558 67562.3
Soybean 2.663 3.724 8.177 94.402 1 138 440.0 1.485 0.487 4.231 35.779 151 329.9
Wheat 4.690 3.300 3.110 17.356 32 320.9 2.062 0.583 2.390 14.406 20 195.4
Rice 2.401 1.361 5.594 59.217 433 818.4 1.503 0.318 1.270 7.504 3 530.8

GARCH – generalized autoregressive conditional heteroscedasticity; MS-GARCH – Markov switching GARCH; 
JB – Jarque-Bera test of normality
Source: Authors’ calculation

https://www.agriculturejournals.cz/web/agricecon/


221

Agricultural Economics – Czech, 66, 2020 (5): 215–225 Original Paper

https://doi.org/10.17221/127/2019-AGRICECON

gest that  all estimated Bayesian quantile parameters 
are highly statistically significant and reliable. 

RESEARCH RESULTS

This section presents the results of an idiosyncratic 
volatility spillover effect between the  four agricul-
tural futures in different market conditions. Since we 
analyse volatility spillovers, our quantiles represent 
the  conditions of  low volatility (left-tail quantiles), 
moderate volatility (median quantile) and high vola-
tility (right-tail quantiles). Our goal is to check is there 
a  bidirectional volatility transmission effect among 
the  all selected agricultural futures. This is a  viable 
assumption, because futures markets are highly inte-
grated and investors can easily transfer from one mar-
ket to  another due to  electronic automated trading. 
Owing to this fact, volatility shocks can easily transfer 
across the markets. Table 4 contains the pairwise es-
timated Bayesian quantile parameters, while Figure 4 
presents their graphical illustrations.

The results in Table 4 are heterogeneous and they in-
dicate that quantile estimates grow larger with the in-
crease of  quantiles, which is expected. This  means 
that  stronger volatility spillover effect is detected 
in the periods of market turmoil, when volatility is in-

creased. In particular, we find very slim volatility spill-
over effect from corn to soybean when volatility in soy-
bean market is very low, and it amounts 5%. However, 
when volatility in soybean market is high or very high, 
which is represented by  0.75th and 0.95th  quantiles, 
the rise of volatility by 100% in corn market transmits 
to  soybean market by  71% and  130%, respectively. 
When the nexus is reversed, we detect relatively high 
risk spillover effect from soybean to corn even in very 
low volatility conditions in  corn market, amounting 
to  43%, and this influence gradually increases with 
the  rise of  volatility  in  corn market, reaching  88% 
and  73% when volatility is at  its peak. These results 
are in line with the paper of Gozgor and Memis (2015) 
who reported strong bidirectional volatility transmis-
sion between the  soybeans and corn markets. They 
explained that  strong nexus between corn and soy-
bean probably comes from the fact that both corn and 
soybean are used in the biofuel production.

Wheat has stronger impact on corn in very low volatility 
conditions (19%) compared to the corn —› wheat trans-
mission effect, where: corn impacts wheat  with  2.5%. 
On the other hand, corn has stronger risk spillover ef-
fect on  wheat  in 0.95th  quantile than the  other way 
around. These findings are similar to  the  previous re-
lation, i.e. the  corn-soybean connection. In  addition, 

Corn – trace plot

M
ed

ia
n 

qu
an

til
e

M
ed

ia
n 

qu
an

til
e

Soybean – trace plot

Iteration Iteration
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6
0.7

0.4
0.5

0.8
0.9
1.0

0.2

0.4

0.6

0.8

Wheat – trace plot

Rice – trace plot

Figure 3. Trace plots for median quantile of the selected agricultural futures

Y-axis depicts the value of calculate trace plots for the median quantile; X-axis stands for the number of iterations 
in Markov chain
Source: Authors’ calculation
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Figure 4. Graphical illustration of the estimated Bayesian quantile parameters

Y-axis describes the value of the estimated Bayesian quantile parameters; X-axis denotes particular quantile parameters 
that are estimated; the shaded area portrays the credible intervals at 95% probability
Source: Authors’ calculation
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Table 4. Bayesian quantile estimates for the volatility transmission effect between the agricultural futures

Bayesian quantile estimates
0.05th 0.25th 0.5th 0.75th 0.95th 0.05th 0.25th 0.5th 0.75th 0.95th

very low low moderate high very high very low low moderate high very high

corn —› soybean soybean —› corn
0.052 0.184 0.430 0.711 1.300 0.428 0.589 0.709 0.876 0.729

corn —› wheat wheat —› corn
0.025 0.420 0.645 0.738 1.261 0.193 0.401 0.617 0.795 0.744

corn —› rice rice —› corn
0.035 0.112 0.198 0.245 0.314 0.187 0.416 0.454 0.619 0.921

wheat —› soybean soybean —› wheat
0.082 0.200 0.359 0.566 0.966 0.190 0.486 0.692 0.880 1.030

wheat —› rice rice —› wheat
0.096 0.211 0.298 0.362 0.331 0.393 0.541 0.750 0.971 1.130

soybean —› rice rice —› soybean
0.147 0.225 0.259 0.387 0.491 0.105 0.209 0.390 0.675 1.468

Source: Authors’ calculation
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we find that soybean has higher volatility spillover effect 
on wheat in all quantiles, without exception, compared 
to  how wheat  affects soybean. Regarding the  interlink 
between corn, soybean, and wheat, our results coincide 
very well with the study of Hamadi et al. (2017) who re-
ported stronger spillover effect running from soybeans 
to  corn and wheat  than conversely. According to  Ta-
ble 4, corn, soybean, and wheat are the agricultural com-
modities that receive and transmit relatively high levels 
of volatility shocks among themselves. Baldi et al. (2016) 
offered a  probable explanation for  this phenomenon. 
They asserted that the reason could lie in so-called com-
modity financialization phenomenon, which has  been 
caused by  a  massive increase in  investments in  com-
modities in  the last two decades. These activities play 
an important role in investors’ portfolio diversification 
strategies, but also increase integration between com-
modity markets, rise levels of  correlation, and induce 
volatility spillovers between markets.

On the other hand, we find interesting results with 
regards to rice futures. Table 4 suggests that rice fu-
tures receive disproportionately lower level of  risk 
transmission from other three agricultural fu-
tures, while the  effect of  rice on corn, soybean, and 
wheat  is relatively high, and it particularly applies 
for rice —› wheat and rice —› soybean pairs. In other 
words, corn has  the lowest volatility impact on rice, 
whereas  wheat  and soybean follow, and this effect 
amounts to 31, 33 and 49%, respectively, in very high 
volatility conditions. In  moderate volatility condi-
tions, this impact is significantly smaller, amounting 
20,  30  and  26% for  100% volatility increase in  corn, 
soybean and wheat  markets, respectively. It can be 
seen that  this influence is far lower than the  size 
of volatility spillover effects which other three agricul-
tural futures experience between each other and from 
rice as well. To be more specific, some of the highest 
volatility transmissions come from the  rice market, 
and in the highest quantile, rice idiosyncratic volatil-
ity shocks impact corn with  92%, wheat  with  113% 
and soybean with  147%. In  moderate market condi-
tions, this effect is also relatively high and amounts 
to  45,  75  and  39% regarding the  rice —› corn, 
rice —› wheat and rice —› soybean relations, respec-
tively. According to our results, it seems that rice fu-
tures are the  most resistant on the  volatility shocks 
that originate from other agricultural markets. Tim-
mer (2014) offered a  possible explanation why rice 
prices are relatively stable throughout the time. He ar-
gued that rice remains a major food source for most 
of  the population in  the Asia and Pacific region. 

Therefore, owing to the rapid economic growth, most 
countries in the Asia and Pacific region became capa-
ble of  conducting aggressive food price stabilisation 
policies, which provide food to  the poor. According 
to this author, these policies make rise prices resilient 
to external shocks, which also includes volatility spill-
overs from other agricultural markets.

The implications of  the findings could be as  fol-
lows. First, volatility spillover effect reflects the  ar-
rival of information in the market, according to Ross 
(1989). We find that soybean and wheat futures mar-
kets endure the  most intense spillover effect from 
other markets, which means that  these two markets 
receive the  highest rate of  information flow from 
the other markets. This high sensitivity of wheat and 
soybean to  the shocks from other markets prevents 
these commodities from being primary investment 
instruments in a portfolio. On the other hand, the vol-
atility transmission effect can also carry a  message 
which commodities are suitable to combine, because 
Lee et al. (2014) asserted that if volatility from one fi-
nancial market transmits to another in high intensity, 
then the assets from such markets cannot be included 
in the same portfolio with the other asset. This means 
that corn cannot be coupled with soybean, when corn 
is an auxiliary asset in a portfolio. The same applies 
for rice when this asset plays an auxiliary role in port-
folios with corn, wheat and soybean. However, when 
rice stands as a primary asset in a portfolio, then corn, 
wheat  and soybean could play an  auxiliary role, be-
cause rice futures receive the lowest amount of vola-
tility shocks from these three markets.

CONCLUSION

This paper tries to determine the level of idiosyncrat-
ic volatility spillover effects between the major agricul-
tural futures – corn, soybean, wheat, and rice. In or-
der to perform this task, we first isolate the common 
factor in  the agricultural futures markets that  is  re-
lated to  a  broader market, and then use the  MS-
GARCH  model to  construct idiosyncratic regime 
switching conditional volatilities. This model produces 
unbiased and accurate measure of uncertainties in the 
agricultural futures markets. In the next step, we em-
bed these regime-switching volatilities in  the Bayes-
ian QR framework, which is also a robust methodology 
in terms of reliability of results.

According to  our findings, the  spillover effect 
is the strongest in high volatility conditions in all mar-
kets without exception. Soybean and wheat are the ag-
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ricultural commodities that receive relatively high levels 
of volatility shocks from the other markets. These find-
ings exclude soybean and wheat as primary investment 
assets in  a  portfolio. On the  other hand, rice receives 
the lowest amount of volatility shocks from all other ag-
ricultural futures. The reason could be the policy of rice 
price stability that is conducted by countries in the Asia 
and Pacific region, since rice is a  major food source 
for most of the population in this region. This result fa-
vours rice futures, from all four commodities, as the pri-
mary asset in a portfolio. Due to  the fact that  rice re-
ceives the weakest volatility shocks spillover effect from 
the  other three markets, all other futures are suitable 
to be an auxiliary asset in a portfolio with rice. 

Our results could be useful for various market par-
ticipants and policymakers who analyse and trade 
in  the  agricultural markets, and who design their 
portfolios with the agricultural futures. Also, our pa-
per gives a  starting point for  the future research, 
in  terms of  intense and origins of  the agricultural 
market volatilities. In  addition, future studies might 
address the  connection between speculators’ activi-
ties in the agricultural markets and the size of volatil-
ity in these markets.
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