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Abstract: This paper investigates the multiscale non-linear risk transmission effect from Brent oil 
to eleven European emerging stock markets. Dynamic extreme risk time series are created using 
the  FIAPARCH-CVaR approach. The  MODWT transformation is applied to  make three wavelet 
details that represent different time horizons. In the final step, the MODWT time series are fitted 
into the Markov switching model to examine the spillover phenomenon. The results indicate that 
the Czech and Hungarian stock markets endure the spillover effect in crisis regime in  the short 
term, probably because these markets are among the most efficient emerging European markets. 
On the other hand, a relatively high spillover effect is found in a peaceful rather than a crisis regime 
in  the case of Poland. This is probably because the Polish index lists almost 300 stocks, which 
means that oil shocks disperse to a large number of different industry sectors. In small and less 
developed markets, such as Estonia, Slovenia, Bulgaria, and Croatia, a high spillover effect exists 
in a tranquil regime because these countries have high oil consumption per capita. Lithuania and 
Latvia do  not report the  spillover effect in  the  short run, while this is true for all time horizons 
in the case of Slovakia.
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Introduction
Oil is the  key strategic energy source that 
runs corporate businesses around the  world. 
This means that the  oil market and stock 
markets are inevitably interconnected, where 
a plethora of  literature confirmed this relation-
ship (Abakah et  al., 2023; Aydin et  al., 2022; 

Mensi et  al., 2022a). Tian et  al. (2022) list 
several economic conduits that connect oil and 
stock markets. One of the most important and 
most detrimental channels is the  supply-side 
shock effect passed on to the effect of inflation. 
In other words, an increase in the price of crude 
oil directly affects production by  increasing 
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the marginal costs of new products. As a result, 
inflation increases due to rising oil prices. This 
lowers spending power of  consumers and re-
duces the profits of companies, which causes 
stock prices to fall. On the other hand, the so-
called aggregate-demand effect also occurs, 
where purchasing power can be transferred 
from oil-importing countries to  oil-exporting 
countries. This results in a rise of stock prices 
in  oil-exporting countries and a  fall of  stock 
prices in oil-importing countries. 

The  recent crises, such  as the  COVID-19 
pandemic and the  ongoing war in  Ukraine, 
have inflicted unprecedented shocks to oil and 
stocks (Gemra et  al., 2022). These develop-
ments intensified the  efforts of  academics, 
investors, and commodity traders to  better 
understand the  interlinks between oil and 
stock markets because they have important 
repercussions for the  stability and successful 
operation of companies. The  left plot in Fig. 1 
clearly shows that the  two crises had a  very 
deep impact on the  Brent oil market. Travel 
restrictions and lockdowns caused a steep drop 
in global oil demand, provoking oil prices to fall 
to 20 USD per barrel in April 2020. On the other 
hand, the  war in  Ukraine pushed the  price 
of oil to over 120 USD per barrel in May 2022. 
These happenings induced huge risk in the oil 
market, as can be seen in the right plot (Fig. 1), 
part of  which has certainly been transferred 
to stock markets. 

The paper tries to  estimate univariate risk 
transmission from Brent oil to  eleven stock 
indices of  East European economies, which 

are members of  the  EU (Poland, Czechia, 
Hungary, Slovakia, Lithuania, Latvia, Estonia, 
Slovenia, Romania, Bulgaria and Croatia). Risk 
transmission between the markets is important 
to study because the oil-stock risk interdepen-
dence is growing stronger, whereas the  risk 
transmission mechanism is becoming more 
complex due to  the  deepening of  commodity 
financialization and global financial integration 
(Wen et al., 2022). 

In order to measure extreme risk, research-
ers usually consider value-at-risk (VAR) to  be 
the  most famous measure of  downside risk. 
However, one of  the  major issues of  the  VaR 
model is its inability to  measure the  losses 
beyond the  threshold amount of VaR. Rockaf-
ellar and Uryasev (2002) tried to  resolve this 
drawback by  proposing the  parametric condi-
tional VaR (CVaR), which can address losses 
beyond  VaR. In  other words, the  parametric 
CVaR calculates the average loss of the worst 
returns taking into account a  certain level 
of  probability (Živkov et  al., 2021). In  order 
to  properly calculate dynamic CVaR, empiri-
cal time series need to  be independently and 
identically distributed, which is usually not 
the  case because daily time series are prone 
to  autocorrelation, heteroscedasticity, volatil-
ity clustering, leverage effects, fat tails, and 
long memory. With the aim to better recognize 
the  idiosyncratic features of  the  time series, 
we  use the  FIAPARCH  model because this 
model produces the  most accurate VaR and 
expected shortfall, according to Alkathery et al. 
(2022). Student  t  distribution is utilized to  fit 

Fig. 1: Empirical dynamics of Brent oil

Source: own
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the fat tails of the empirical time series. Accord-
ingly, the white noise residuals of this model are 
used to create the dynamic CVaR time series 
of Brent oil and stock indices.

Jin et al. (2023) assert that oil price shocks 
can impact stock prices in  different time hori-
zons, which means that risk spillovers can be 
observed at multiple time scales. This concept 
is also important from the  aspect of  different 
market participants. In other words, short-term 
agents, such  as arbitrageurs and speculators 
primarily look at temporary happenings, such as 
unusual events and socio-economic news 
(Rösch et al., 2022). Fund managers, as mid-
term investors, are concerned to medium-term 
market developments (Barunik & Krehlik, 2018). 
On  the  other hand, policymakers and large 
financial institutions, such  as insurance com-
panies and pension funds, are keen to  know 
how the macroeconomic environment and fun-
damental factors function (Fong et  al., 2022). 
To  address the  issue of  the  multi-frequency 
spillover effect, we  use the  maximum overlap 
discrete wavelet transformation (MODWT) 
methodology in order to generate the wavelet 
signals of  different frequencies that personify 
short-, medium- and long-term horizons.

In  the final stage of  the  research process, 
we embed eleven wavelet-based oil-stock pairs 
into the Markov switching (MS) model in a pair-
wise manner in order to  investigate the unidi-
rectional oil-stock causality. This model is used 
to capture shifts in economic or financial data 
when they cannot be fully explained by a single 
set of  parameters and assumptions. Since 
we cover a relatively long time span, which in-
cludes the two crises, it is logical to hypothesize 
that the relationship is non-linear. In particular, 
assuming the  presence of  a  non-constant 
relationship, we allow stock indices to  rely on 
the  two independent state regimes that shape 
the  conditional mean process. Basher et  al. 
(2016) explain that the Markov switching model 
uses the  information from the varying regime-
switching probabilities of  being in  a  particular 
regime to  allow time-varying causality across 
regimes. From this aspect, we  can get in-
formation in  which time the  horizon extreme 
risks from the  oil market have the  greatest 
impact on the stock market and in which regime 
this happens.

The existing literature found mixed results 
regarding the  oil-stock risk spillover relation-
ship without reaching a  consensus, which 

indicates the  complexity of  this phenomenon. 
Ahmed and Huo (2021) utilized the  tri-variate 
VAR-BEKK-GARCH  model to  examine the 
dynamic nexus among commodity markets, 
the  Chinese stock market and global oil 
price. They found bidirectional shocks spill-
overs between oil and stock markets but 
unidirectional volatility spillovers from the  oil 
market to  the  Chinese stock market. Jiang 
et  al. (2022) used the  long-memory Copula-
CoVaR-MODWT method to document the risk 
spillovers from oil to  BRICS stock markets, 
addressing both time and frequency domains. 
They showed that significant risk spillovers ex-
ist with time-varying and heterogeneous char-
acteristics. The paper of Okorie and Lin (2022) 
researched the information spillovers in return 
and volatility, considering the  two crude oil 
markets (Brent and WTI) and the  Nigerian 
stock index (NSE) using the asymmetric VAR-
MGARCH-GJR-BEKK model. They found a bi-
directional volatility spillover effect between 
the crude oil markets and the NSE index, and 
significant asymmetric shocks. Chan and Qiao 
(2023) investigated the  volatility interdepen-
dencies between oil and stock markets, taking 
into account the WTI oil price and ten S&P500 
sub-indices. According to their results, demand 
shocks to  stock markets and oil cause much 
stronger spillover effects than supply shocks.

The  main research question of  the  paper 
and its contribution to  the  existing literature 
pertains to whether and how extreme risk from 
the Brent market spills over to the stock markets 
of  Central and Eastern European countries. 
This type of  research has never been done 
before for this group of  countries, to  the  best 
of  our knowledge, and this is our motive 
to  do  this study. Contribution is also reflected 
in  the  fact that the spillover effect is observed 
from the aspect of various time horizons, which 
deepens the  understanding of  this phenom-
enon. The  use of  elaborate methodologies 
contributes to the reliability of the results, which 
is also a relevant characteristic of this paper.

Besides the introduction, the rest of the pa-
per is structured as follows. The  first sec-
tion explains the  used methodologies –  the 
FIAPARCH model, wavelet transformation, and 
Markov switching model. The  second section 
introduces the  research data and preliminary 
findings. The  results and discussion are pre-
sented in  the  third section. The  last section is 
reserved for conclusions.
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1.	 Used methodologies
1.1	 Long memory GARCH and dynamic 

CVaR
If  a  time series has a  slow declining autocor-
relation function (ACF), then it has the  long 
memory property, as Ding and Granger (1996) 
explained. It is said that time series is a station-
ary long-memory process if the autocorrelation 
function (ACF), ρ(k) behaves as ρ(k) ≈ c|k|2d–1 
as |k|→∞, where 0 < d < 0.5, and c is a posi-
tive constant. The  ACF  has a  very slow rate 
of  decline to  zero as  k  strives to  infinity and 
∑∞

k=–∞|ρ(k)| = ∞. Long memory property can 
be modelled by the  fractionally integrated 
GARCH (FIGARCH) model, which is an exten-
sion of the classical GARCH model. It  is used 
to  capture long-memory persistence in  volatil-
ity, which means it  accounts for the  fact that 
volatility tends to persist over time. In the tradi-
tional GARCH model, volatility is modeled using 
lagged squared errors and lagged conditional 
variances. However, these models assume that 
volatility persistence is  finite. In  contrast, the 
FIGARCH model allows for the possibility of infi-
nite persistence, meaning that shocks to volatil-
ity can have a lasting impact on future volatility.

Some papers found the  long memory pro-
cess in energy commodities and stocks (Chkili 
et al., 2021; Youssef et al., 2015), so we apply 
the  fractional integrated asymmetric power 
ARCH model – FIAPARCH of Tse (1998) in or-
der to address this issue. The mean equation in-
cludes the first-order autoregressive term, which 
is enough to deal with autocorrelation. Student t 
distribution tackles fat tails in the empirical dis-
tributions. The  mean and FIAPARCH(p,  d,  q) 
specifications look as follows:

yt = C + Θyt–1 + εt ; εt ~ St(0, σt , ν)	 (1)

�σt
δ = ω[1 – β(L)]–1 + 

+ {[1 – β(L)]–1 α(L)(1–L)d } (|εt| – γεt )δ

	

(2)

where: ω is constant; L  denotes the  lag-op-
erator; γ,  δ  and  d  are the  model parameters. 
Parameter γ is the  leverage coefficient, where 
γ < 0 means that positive shocks affect volatil-
ity more than negative shocks and vice-versa. 
Symbol δ stands for the power term parameter, 
and it has finite positive values. When γ  =  0 
and δ  =  2, the  FIAPARCH  process becomes 
FIGARCH(p, d, q) model. d represents the frac-
tionally differencing parameter measuring 
the  persistence of  shocks to  the  conditional 

variance. FIGARCH(p, d, q) model permits an in-
termediate range of  persistence, where d  pa-
rameter can be found in the scope: 0 < d < 1. 
When d = 0, FIGARCH model reduces to ordi-
nary GARCH, whereas when d = 1, FIGARCH is 
equivalent to integrated GARCH or IGARCH.

After the estimation of the FIAPARCH mod-
els, we  use the  fitted residuals to  calculate 
the  dynamic CVaR time series at 5%  prob-
ability level. CVaR  measures the  average 
amount of loss that investor could have in one 
day with a certain probability. CVaR is the inte-
gral of VaR, where VaR can be expressed as 
VaRα = μ ̂ + Zασ .̂ μ  ̂and σ  ̂denote the estimated 
mean and standard deviation of  a  particular 
asset, respectively, while Zα  is the left quantile 
of  the  normal standard distribution. CVaR  is 
calculated as in Equation (3):

	
(3)

1.2	 MODWT transformation
After constructing the dynamic CVaR time se-
ries of all assets, we use wavelet methodology 
to build three wavelet details representing short-, 
medium- and long-term horizons. On the theo-
retical basis, the wavelet operates with the two 
elementary wavelet functions: mother wavelet 
(ψ) and father wavelet (ϕ). Father wavelets de-
pict the low frequency or smooth parts of a sig-
nal, having an integral of 1. On the other hand, 
mother wavelets explain high-frequency com-
ponents with an integral equal to 0. The father 
(ϕJ,k(t)) and mother (ψJ,k(t)) wavelet functions 
can be presented in the following way:

	
(4)

where: symbol 2J stands for the  scale factor, 
while 2k

J is the translation or location parameter.
For  the  wavelet computation process, 

the  study uses the  non-orthogonal wavelets, 
known as the maximum overlap discrete wave-
let transformation (MODWT), which has highly 
redundant and non-orthogonal transformation 
characteristics. Decomposed signals in  the 
MODWT framework are presented as follows:

SJ,k ≈∫f(t)ϕJ,k (t)dt	 (5)
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DJ,k ≈∫f(t)ψJ,k (t)dt, j = 1, 2, …, J	 (6)

where: symbols SJ,k and DJ,k denote the  fluc-
tuation and scaling coefficients, respectively, at 
particular jth level, which decomposes empirical 
signal or time series in terms of a specific fre-
quency (trending and fluctuation components).

According to  Equations  (5–6), an  empiri-
cal time series y(t) can be expressed in terms 
of those signals as:

�f(t) = ∑SJ,k ϕJ,k (t) + ∑Dj,k ψj,k (t) + 
 
+ ∑Dj–1,k ψj–1,k (t) + … +∑D1,k ψ1,k (t) 	

(7)

1.3	 Markov switching model 
The scale-dependent Markov switching model 
was originally developed by  Goldfeld and 
Quandt (1973), and we are using it to research 
the  non-linear extreme risk spillover effect 
between Brent oil and stock markets in differ-
ent time horizons. The  Markov chain governs 
the Markov switching model, where the  future 
state depends only on the  current state and 
the  probability of  a  particular value (Rosen 
et al., 2023). In  this paper, two states are as-
sumed (St = 1, 2), where St  is an unobserved 
state variable. St = 1 depicts increased volatility 
in  the stock markets, while state St = 2  refers 
to calm market conditions. Besides the switch-
ing process in  the  mean, we  also permit 
the variance of the error term to switch between 
the  states. The  unidirectional wavelet-based 
Markov switching estimation equation looks 
like as follows:

SI ji,t = c jst + ϕ jstOILt
j + ε jtj ; εt ~ N(0,σ2

st )	 (8)

where: SI denotes the dynamic CVaR of a par-
ticular stock index  i, and OIL  is  the  dynamic 
CVaR of  Brent time series. Both constant  c 
and the spillover parameter ϕ are scale-depen-
dent, where the  wavelet scale is labelled by 
the  symbol  j. The Markov chain is unobserv-
able by definition, which means that probabili-
ties need to be included in order to estimate 
an output. In other words, changing regimes is 
not governed deterministically but with a cer-
tain probability (Qian et al., 2022). Therefore, 
the unobserved state variable St follows a two-
state Markov process with transition probabili-
ties as in Equation (9):

P(St = 1│St–1 = 1) = p11
P(St = 1│St–1 = 2) = p12
P(St = 2│St–1 = 1) = p21
P(St = 2│St–1 = 2) = p22

where 
p11 + p12 = 
= p21 + p22 = 1}

	

(9)

The  Markov switching model is estimated 
by the  maximum likelihood function, where 
the  filtering procedure of  Hamilton (1990) and 
the smoothing algorithm of Kim (1994) are used.

2.	 Dataset and preliminary findings
The paper uses daily data of Brent spot oil and 
eleven stock market indices from the countries 
of Central and Eastern Europe: WIG (Poland), 
PX (Czechia), BUX (Hungary), SAX (Slovakia), 
OMXV (Lithuania), OMXR (Latvia), OMXT (Es-
tonia), SOBITOP (Slovenia), BET (Romania), 
SOFIX (Bulgaria) and CROBEX (Croatia). 
All  assets are collected from the  stooq.com 
and investing.com websites. The  sample cov-
ers the period between January 2017 and Au-
gust 2023, which includes relatively calm and 
turbulent periods before and during the  pan-
demic and the  war in  Ukraine. All  indices are 
separately combined and synchronized with 
Brent oil. Also, all  time series are transformed 
into log returns (ri) according to the expression: 
ri  =  100  ×  log(Pi,t /Pi,t−1), where Pi  is the  price 
of a particular asset. It should be said that SAX 
is the  least liquid index, while Bratislava  SE 
is the  least developed stock exchange (Baele 
et  al., 2015), which means that there was 
no trading at all on a significant number of days. 
This is reflected in the modeling and construc-
tion of  extreme downside and upside risks. 
In other words, the created dynamic downside 
risk time series of  SAX are not smooth as 
in the case of other indices (Fig. 2). 

Descriptive statistics in  Tab.  1 include 
the  first four moments, the  Jarque-Bera test 
of  normality, the  Ljung-Box test of  level and 
squared residuals and the DF-GLS unit root test. 
Brent has high kurtosis, which implies the pres-
ence of extreme risk, but all other indices also 
have high kurtosis, which means that high risk 
is a common phenomenon in the observed pe-
riod, particularly due to the pandemic. Autocor-
relation is present in all assets except Brent and 
WIG, whereas all the  time series report time-
varying variance. These features of  the  time 
series can be resolved by some form of the AR-
GARCH model. Besides, all the time series are 
stationary, as the DF-GLS test indicates, which 
is necessary for the GARCH modelling.

k

k k

k
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Mean Std. dev. Skewness Kurtosis JB LB(Q) LB(Q2) DF-GLS

Brent 0.011 1.177 −1.562 26.170 38,310.0 0.241 0.000 −8.758

WIG 0.008 0.546 −1.248 17.372 14,654.9 0.155 0.000 −6.374

PX 0.010 0.419 −1.064 15.414 10,946.7 0.000 0.000 −7.403

BUX 0.015 0.574 −1.383 15.700 11,621.9 0.000 0.000 −20.909

SAX 0.000 0.418 −0.403 14.509 8,923.4 0.001 0.000 −44.632

OMXV 0.014 0.292 −3.096 56.475 198,993.5 0.000 0.000 −16.888

OMXR 0.017 0.504 −0.777 41.551 102,095.1 0.000 0.000 −15.721

OMXT 0.014 0.363 −2.460 34.828 71,785.7 0.000 0.000 −35.429

SOBITOP 0.014 0.372 −1.785 22.859 27,887.3 0.000 0.000 −5.765

BET 0.016 0.458 −1.709 24.696 33,185.9 0.000 0.000 −10.056

SOFIX 0.005 0.346 −2.451 35.449 73,144.7 0.000 0.000 −11.661

CROBEX 0.005 0.345 −3.468 48.391 144,426.2 0.000 0.000 −2.772

Notes: JB – Jarque-Bera coefficients of normality; LB(Q) and LB(Q2) tests denote p-values of the Ljung-Box Q-statistics 
of the level and squared residuals for 10 lags; 1% and 5% critical values for DF-GLS test with 5 lags are −2.566 and 
−1.941, respectively. 

Source: own

Absolute returns Squared returns
Lo’s R/S GPH GSP Lo’s R/S GPH GSP

Brent 3.864*** 0.246*** 0.257*** 2.737*** 0.178*** 0.161***

WIG 4.400*** 0.234*** 0.235*** 2.601*** 0.161*** 0.165***

PX 4.911*** 0.305*** 0.273*** 3.248*** 0.344*** 0.290***

BUX 4.074*** 0.295*** 0.268*** 2.766*** 0.222*** 0.209***

SAX 2.591*** 0.105*** 0.153*** 1.660*** 0.071*** 0.070***

OMXV 3.301*** 0.285*** 0.271*** 1.812* 0.210*** 0.200***

OMXR 1.653 0.335*** 0.302*** 1.246 0.246*** 0.240***

OMXT 4.864*** 0.370*** 0.314*** 2.847*** 0.381*** 0.289***

SOBITOP 3.383*** 0.359*** 0.312*** 2.481*** 0.230*** 0.215***

BET 2.531*** 0.257*** 0.241*** 2.262*** 0.195*** 0.162***

SOFIX 3.274*** 0.261*** 0.249*** 1.911** 0.148*** 0.138***

CROBEX 2.601*** 0.384*** 0.322*** 2.076*** 0.285*** 0.231***

Note: *** significance at 1%  level, ** significance at 5%  level; the  critical values Lo’s  R/S  statistics test are 
90%: [0.861, 1.747], 95%: [0.809, 1.862] and 99%: [0.721, 2.098]. 

Source: own

Tab. 1: Descriptive statistics of the selected assets

Tab. 2: Long memory tests
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Besides standard descriptive statis-
tics, Tab.  2  tests the  long memory property 
of  the unconditional returns and unconditional 
volatility. Following Youssef (2015) and Alk-
athery et al. (2022), three tests are performed 
on absolute and squared returns. These tests 
are modified R/S  statistics of  Lo  (1991), and 
two semiparametric estimates of  Hurst coef-
ficient, which are the  long periodogram (GPH) 
estimate of  Geweke and Poter-Hudak (1983) 
and Gaussian semiparametric (GSP) estimate 
of  Robinson (1995). Tab.  2  clearly indicates 
that both GPH and GSP tests verify the pres-
ence of long memory for all assets in absolute 
and squared returns at very high probability. 

The same applies for the Lo’s R/S test, except 
for the case of OMXR. This means that the use 
of the FIAPARCH model is justified.

Tab.  3 shows the  estimated parameters 
of  the  FIAPARCH  model of  all assets, and 
also the  Ljung-Box  Q-statistics of  level and 
squared residuals. The FIAPARCH model fits 
well for all time series, except for the  Slova-
kian SAX index, where symmetric FIGARCH is 
used instead. In  all cases, δ  parameter is 
highly statistically significant, which means 
that all assets display strong evidence 
of volatility asymmetry. 

In  the  seven out of  twelve cases, γ  pa-
rameter is positive and significant, suggesting 

that negative shocks affect volatility more than 
positive shocks, which is strong evidence that 
the leverage effect exists in the stock markets. 
In addition, all d parameters are highly statisti-
cally significant, which means that the  long 
memory GARCH model can capture the  long-
range memory phenomenon. All ν parameters 
are significant at 99% probability, indicating that 
Student t distribution recognizes fat-tail proper-
ties of the time series very well. The Ljung-Box 
test results suggest that the residuals are free 
of  autocorrelation and heteroscedasticity is-
sues and are therefore suitable for the dynamic 
CVaR calculation.

Fig. 2 presents the log returns of the select-
ed assets and the two dynamic VaR and CVaR 
risks, calculated at 95% probability. Fig. 2 clear-
ly shows that extreme risk is present in the ob-
served sample, which is especially evident 
in early 2020 when the pandemic erupted and 
in early 2022 when the war in Ukraine started.

The  paper tries to  estimate the  multiscale 
spillover effect in different time horizons. In this 
regard, every dynamic downside CVaR time 
series is transformed into three wavelet scales: 
scale 1 (2–4 days), scale 5 (32–64 days), and 
scale 6 (64–128 days). We considered only these 
three scales in order to avoid results overload. 

Brent POL CZE HUN SLK LIT LAT EST SLO ROM BUL CRO

Panel A: Variance equation

α 0.248** 0.186 −0.152 0.152** 0.618*** −0.467 −0.216 0.315 0.137 0.138 −0.109 −0.001

β 0.476*** 0.316*** −0.034 0.360*** 0.189 −0.409 −0.181 0.281 0.165 0.311*** −0.046 0.086

γ 0.472* 0.997*** 0.518*** 0.437*** NA −0.018 0.244** −0.026 0.192*** 0.390*** 0.080 0.075

δ 1.532*** 1.443*** 1.692*** 1.669*** NA 1.637*** 1.767*** 1.955*** 1.689*** 1.554*** 1.572*** 1.651***

d 0.309*** 0.188*** 0.214*** 0.296*** 0.371*** 0.320*** 0.252*** 0.326*** 0.264*** 0.297*** 0.234*** 0.303***

ν 4.509*** 8.034*** 5.931*** 9.991*** 2.139*** 4.089*** 3.243*** 4.150*** 4.792*** 4.836*** 4.357*** 3.881***

Panel B: Diagnostic tests

LB(Q) 0.272 0.247 0.529 0.783 0.369 0.329 0.212 0.402 0.377 0.171 0.535 0.222

LB(Q2) 0.220 0.293 0.652 0.316 0.428 0.476 0.994 0.511 0.118 0.960 0.579 0.998

Note: ***, **, * indicate significance at 1,  5  and  10%  level, respectively; LB(Q)  and  LB(Q2)  tests denote p-values 
of the Ljung-Box Q-statistics of the level and squared residuals for 10 lags.

Source: own

Tab. 3: Estimated FIAPARCH models of the selected assets
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Fig. 2: Calculated extreme downside and upside risk time series of the stock indices 
and Brent

Source: own

Fig. 3: Three wavelet details of Brent oil

Source: own
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The first scale corresponds to the short-term ho-
rizon, whereas the fifth and sixth scales are re-
garded as mid-term and long-term, respectively. 
Fig. 3 shows three transformed wavelet time se-
ries of Brent oil using the MODWT methodology.

3.	 Results and discussion
3.1	 Results
This section presents the  results of  the  es-
timated wavelet-based two-state Markov 
switching model. State 1 (2) refers to the crisis 
(tranquil) period, respectively. Tab.  4  shows 
the results of regime-dependent ϕ parameters, 
transition probabilities, average expected du-
ration of  each regime and regime-specific er-
ror variances. All  these values are calculated 
in respect to the three wavelet details. It can be 
seen that the  regime parameters are different 
across the regimes, wavelet scales and coun-
tries, which justifies the  use of  the  wavelet-
based MS model. 

Most of  the  regime-dependent parameters 
are highly statistically significant, which means 

that the extreme risk spillover phenomenon ex-
ists from Brent oil to stock markets in CEECs. 
On  the  other hand, the  statistically significant 
parameters are positive and in  line with logic 
in  most cases, which suggests that when ex-
treme risk rises in the oil market, the rise of risk 
in stock markets follows. Only in a  few cases, 
we find statistically significant negative parame-
ters, which means that rising risk in the oil mar-
ket actually decreases extreme risk in the stock 
market. However, these parameters are very 
low, indicating that this counterintuitive phe-
nomenon is very weak and almost non-existent. 

Observing Panel A in Tab. 4, which portrays 
the short-term horizon, it can be seen that rela-
tively strong spillover effect exists in both crisis 
and tranquil regimes. It is interesting to note that 
almost always, one regime parameter is sig-
nificantly higher than the other, suggesting that 
the spillover effect happens dominantly in one 
regime. In particular, relatively high statistically 
significant parameters are found in  Czechia, 
Hungary and Romania in  the  crisis regime, 

POL CZE HUN SLK LIT LAT EST SLO ROM BUL CRO

Panel A: D1 wavelet scale

ϕ1 0.003 0.114*** 0.195*** −0.009 0.091 −0.037 −0.010 0.018*** 0.309*** 0.008 0.042***

ϕ2 0.170*** −0.002 0.000 −0.280 −0.004 0.024*** 0.324*** 0.436*** −0.004 0.273*** 0.484***

P11 0.920 0.840 0.710 0.900 0.750 0.760 0.930 0.930 0.850 0.930 0.960

P22 0.750 0.920 0.920 0.790 0.970 0.950 0.770 0.700 0.800 0.730 0.720

ED1 12.300 6.300 3.500 9.700 4.000 4.100 15.000 14.100 1.200 15.100 23.800

ED2 4.000 12.200 11.900 4.800 32.000 18.50 4.400 3.300 5.000 3.700 3.600

σ2
1 −3.980*** −2.410*** −2.110*** −3.030*** −1.530*** −1.280*** −3.360*** −3.570*** −1.790*** −3.980*** −3.840***

σ2
2 −2.410*** −4.220*** −3.800*** −0.980*** −3.860*** −3.150*** −1.480*** −1.740*** −3.780*** −2.350*** −1.840***

Panel B: D5 wavelet scale

ϕ1 0.163*** 0.370*** −0.002 −0.076*** 0.256*** 0.296*** 0.323*** 0.313*** 0.114*** 0.250*** 0.330***

ϕ2 0.351*** 0.091*** 0.500*** 0.018 −0.005 0.059*** 0.094*** 0.012** 0.449*** −0.027*** 0.014***

P11 0.980 0.940 0.980 0.970 0.950 0.950 0.940 0.950 0.760 0.950 0.950

P22 0.930 0.980 0.950 0.960 0.980 0.990 0.980 0.980 0.240 0.970 0.980

ED1 48.400 17.700 41.100 36.300 20.300 21.800 16.300 20.600 4.200 20.100 20.800

ED2 15.100 41.000 19.600 26.800 50.800 74.100 41.400 62.800 1.300 31.000 66.200

σ2
1 −2.960*** −1.520*** −3.070*** −3.510*** −1.920*** −1.120*** −1.600*** −1.750 −2.720*** −2.380*** −1.600***

σ2
2 −1.530*** −3.180*** −1.340*** −2.060*** −3.890*** −2.970*** −3.290*** −3.570 −1.370*** −4.100*** −3.510***

Tab. 4: Estimated wavelet-based Markov switching models – Part 1
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while five countries endure stronger extreme 
risk spillover effects when stock markets are 
in the calm regime (Poland, Estonia, Slovenia, 
Bulgaria and Croatia). In  three countries (Slo-
vakia, Lithuania and Latvia), the  parameters 
are either insignificant or very low. In  order 
to  find a  rational explanation for the  results 
in Tab. 4, some peculiarities of the countries and 
stock markets need to be addressed. In other 
words, it  is important to  know the  level of  oil 
consumption per country, and also the number 
of stocks in the selected indices. The latter fac-
tor is relevant because not all companies listed 
in  some indexes react equally to  oil shocks, 
meaning that the greater the number of shares 
in the index, the greater the effect of dispersion, 
that is, the  lower the  impact of  oil shocks on 
the index. In this regard, Tab. 5 contains oil con-
sumption per capita and the number of stocks 
in the indices. 

Czechia, Hungary and Romania endure 
the strongest spillover effect from oil in the cri-
sis regime in  the  short term, 0.114, 0.195 
and 0.309, respectively. At  first glance, these 
results seem perplexing because Romania 
has the  lowest oil consumption per  capita 
(Tab.  5), but suffers the  greatest impact from 
oil shocks. However, Romania is the largest oil 
producer in  Central and Eastern Europe, ac-
cording to CIA World Factbook data from 2020, 
with a  production of  70.000  bbl  per  day. This 
means that the  Romanian energy industry is 

an important contributor to the Romanian eco-
nomy in terms of manufacturing, tax revenues, 
and export. Besides, several Romanian energy 
companies are listed in  the BET  index, which 
could be the reason why BET suffers the high-
est impact from the oil market in  the crisis re-
gime in the short term. On the other hand, for 
the Czech and Hungarian cases, the  reasons 
are different. These stock exchanges, and 
particularly Hungarian, are among the most de-
veloped stock exchanges in Central and East-
ern Europe, according to  Baele et  al. (2015), 
which means that these markets process new 
information the  most effectively. This is espe-
cially true in turbulent times, which explains why 
statistically significant ϕ parameters are found 
in the first regime. In addition, it should be noted 
that expected duration of  the  crisis regime 
is significantly shorter compared to  the  calm 
regime in these countries, which is particularly 
true for the more developed Hungarian market. 
This signals that investors in these markets re-
act promptly at any sign of negative information 
shocks in order to avoid further losses. These 
results coincide with Marek and Benada (2020), 
who investigated the Prague Stock Exchange. 
The Polish stock exchange is also in the group 
of  the  developed markets in  CEECs, accord-
ing to  Baele et  al. (2015), but ϕ  parameter 
in the first regime is insignificant, which means 
that extreme oil shocks do not affect WIG in cri-
sis, but rather in  tranquil period. The rationale 

POL CZE HUN SLK LIT LAT EST SLO ROM BUL CRO

Panel C: D6 wavelet scale

ϕ1 0.064*** 0.037*** 0.438*** −0.003** 0.201*** −0.065*** 0.263*** 0.259*** 0.371*** 0.196*** 0.013***

ϕ2 0.301*** 0.379*** 0.045*** −0.016 0.003 0.315*** 0.051*** 0.027 0.107*** −0.020*** 0.307***

P11 0.970 0.980 0.970 0.970 0.970 0.980 0.980 0.980 0.390 0.980 0.980

P22 0.970 0.970 0.980 0.960 0.990 0.970 0.990 0.990 0.600 0.980 0.970

ED1 35.500 72.600 29.800 37.600 38.200 55.400 42.100 40.600 1.700 44.300 64.200

ED2 31.000 34.500 44.400 25.900 66.800 36.900 78.600 73.700 2.500 49.400 37.500

σ2
1 −3.520*** −3.250*** −1.730*** −3.750*** −1.970*** −3.160*** −1.520*** −1.810*** −1.600*** −2.770*** −3.750***

σ2
2 −1.850*** −1.840*** −3.290*** −2.310*** −3.730*** −1.910*** −3.710*** −3.630*** −2.750*** −4.180*** −1.900***

Note: ***, **, * indicate significance at 1, 5 and 10% level, respectively; the regime-specific error-variances are shown 
in quadratic form, so they should be observed in absolute values.

Source: own

Tab. 4: Estimated wavelet-based Markov switching models – Part 2
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could lie in the fact that the Polish stock market 
is the  biggest, with significantly more quoted 
companies than in  any other country from 
Central and Eastern Europe  (Tab.  5). This 
suggests that the  effect of  dispersion is more 
present in the Polish stock market than in any 
other CEEC.

In the cases of smaller and less developed 
markets, such  as Estonia, Slovenia, Bulgaria 
and Croatia, we find relatively high parameters 
in  the  second regime. Estonia has the  high-
est oil consumption per  capita, while all other 
countries have relatively high oil consumption 
(Tab. 5). However, all  these markets are rela-
tively underdeveloped and illiquid, which means 
that the  fast reaction of  market participants 
to  external shocks is not happening. This is 
probably the reason why extreme risk spillover 
is detected in  the  second regime. Slovakia, 
Lithuania and Latvia also belong to  the group 
of less-developed markets, while the Slovakian 
stock market is particularly illiquid. In these cas-
es, statistically significant ϕ parameters are not 
detected. In the Slovakian case, SAX lists only 
one company, Biotika, which is a pharmaceuti-
cal company that is by default less susceptible 
to  oil shocks. This fact explains a  lot of  why 
statistically insignificant parameters are found 
in the Slovakian case. 

Our results are generally in line with Salisu 
and Gupta (2021) and Gupta et  al. (2021). 
The  former paper researched the  response 
of stock market volatility of the BRICS countries 
to oil shocks and found heterogeneous results. 
They asserted that differences in the economic 
size, financial system, oil production (consump-
tion) profile of  the  countries and regulation 
efficiency can explain  these divergences. 
The latter paper analysed the impact of different 

factors such as: global economic activity, oil 
supply, oil-specific consumption demand, and 
oil-inventory demand shocks on the  tail risk 
of equity markets in  the panel of 48 emerging 
and developed economies. They asserted that 
oil-specific consumption-demand shocks are 
associated with an increase in tail risks.

Looking at additional findings, Tab. 4 shows 
that all regime-dependent probabilities are rela-
tively high, which refers to the likelihood of be-
ing in a particular state at a given point in time. 
This indicates the probability that the observed 
data at a specific time period were generated 
by a particular regime. Besides, all  sigma pa-
rameters are highly significant, which means 
that a certain magnitude of volatility is present 
in each regime.

On the other hand, Panels B and C show 
results in  midterm and long term, revealing 
different findings compared to  the  short-term 
horizon. In  the  first place, some countries, 
such  as Lithuania and Latvia, report spillover 
effect in  the  longer time horizons, whereas 
this is not the case in the short term. Besides, 
the spillover effect intensity is generally higher 
in  longer terms, which is especially the  case 
for countries which have high spillover effect 
in the crisis regime, such as Czechia, Hungary 
and Romania. In  particular, Czechia has sig-
nificant ϕ parameters in midterm and long term 
in  amounts of  0.370 and 0.379, respectively. 
Hungarian parameters are  0.500 and  0.438, 
while for the case of Romania, they are 0.449 
and 0.371, respectively. Our findings of higher 
risk spillover effect in the longer time horizons 
is similar to  Mensi et  al. (2022b), who re-
searched the extreme risk spillover effect from 
oil to ASEAN stock markets, using the  CVaR 
measure of risk. They claimed that these results 

POL CZE HUN SLK LIT LAT EST SLO ROM BUL CRO
Bbl/day per 
1,000 peoplea 14.69 19.23 14.72 15.29 19.00 13.63 24.32 15.29 8.97 12.93 15.29

Number of stocks 
in indexb 296 10 17 1 10 9 9 8 17 15 11

Note: Bbl – barrel of crude oil.

Source: own (based on a CIA World Factbook – information is accurate as of January 1, 2020  
(Central Intelligence Agency, 2020); b https://www.investing.com, accessed on August 2023;  

www.nasdaqomxnordic.com is used for OMXV, OMXR and OMXT indices)

Tab. 5: Oil consumption per capita and number of stocks in the indices
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suggest that long-term spillovers persist more 
than short-term spillovers. The paper of Li and 
Wei (2018), also finds a  higher oil spillover 
effect in  the  long term, researching the  case 
of  China. They explained that this may indi-
cate that market participants are paying more 
attention to  long-term volatility in  the crude oil 
market when creating their trading strategies. 
It is interesting to note that Slovakia is the only 
country where the spillover effect is not found 
in  the mid-term and long-term horizons, what-
soever, which strongly indicates that Slovakian 
stock market is highly inefficient and illiquid. 
This means that the Slovakian stock market is 
not capable to record shocks from the oil mar-
ket in any time horizon. 

3.2	 Discussion 
The  results can have significant implications 
for investors in  the  CEE  stock markets, port-
folio managers and policymakers. The  inves-
tors in stock markets should take into account 
the  magnitude of  the  spillover effect during 
a  crisis and tranquil conditions regarding dif-
ferent time horizons, in order to properly man-
age external oil shocks, which coincides with 
the paper of Jiang et al. (2022). In other words, 
knowing the  size of  the  risk spillover effect, 
market participants could formulate workable 
hedging strategies that will mitigate the impact 
of oil markets. Also, in every stock exchange, 
different market participants operate in different 
time horizons. Therefore, having information 
about the size of the spillover effect in different 
time periods can indicate what type of hedging 
instruments market agents should apply in or-
der to reduce extreme risk shocks from the oil 
market. In some instances, such as the Slova-
kian case, no  hedging strategies are needed 
in  any time horizon because the  Slovakian 
stock market does not absorb oil shocks due 
to high illiquidity. Based on the results, investors 
in stock markets can decide whether and when 
to take short- or long-term positions in particu-
lar indices. The aforementioned is in  line with 
the conclusions reached by Gupta et al. (2021), 
who asserted that investors must be aware that 
the nature of oil-market shocks matters in driv-
ing tail risks, and, hence, the corresponding im-
pact on the equity premium is shock-dependent. 
They researched the effect of tail risk as we did, 
but with a different methodology and on a dif-
ferent sample. Our  improvement compared 
to the paper of Gupta et al. (2021) is reflected 

in the fact that we add the wavelet methodology 
to distinguish between different time horizons. 

Besides, the  results have implications 
for portfolio managers or investors who want 
to pair oil with CEEC stock indices in the same 
portfolio. In  other words, if  a  particular index 
endures a heavy risk spillover effect from the oil 
market, this is a strong indication that these two 
assets should not be combined in  the  same 
portfolio. For instance, it is not a good decision 
to  combine the Romanian BET index with oil, 
when the  stock market is in  turbulent mode 
in  the  short time horizon. The  same applies 
to the Estonian, Slovenian and Croatian index 
in tranquil times in the short term. On the other 
hand, when a less sensitive index to spillovers 
dominates the portfolio, diversification may be 
more effective. Being aware of  the  presence 
of risk spillovers requires thoughtful placement 
and careful rebalancing of the oil stock portfolio. 
This takes careful thinking about the perspec-
tive of  different investment horizons because 
it  is obvious that long-term stock investments 
are more exposed to  extreme oil risk shocks 
than short-term investments. This is in  line 
with the  assertion of  Tian et  al. (2022), who 
state that fund managers and global inves-
tors should evaluate comprehensively the  risk 
measurement of  risk contagions and accord-
ingly adjust their positions to  optimize their 
portfolio strategies.

At the end, the results also have important 
message for policymakers and their macro-
prudential regulation measures. In other words, 
in  those countries that are very susceptible 
to extreme risk shocks from the oil market, poli-
cymakers may need to implement and enforce 
stricter regulations to limit the risk transmission 
between oil and stock markets. These regula-
tions could include requirements directed at 
financial institutions exposed to  oil shocks or 
placing limits on  their holdings of  oil-related 
assets. In addition, regular stress testing of fi-
nancial institutions to assess their vulnerability 
to  oil price shocks can help identify potential 
weaknesses in the financial system and guide 
appropriate policy responses. Based on the dif-
ferent time horizons in  which shock spillovers 
occur, it  would be very useful if  policymakers 
could implement targeted reforms that reduce 
the  vulnerability of  stock markets in  different 
time horizons. Such reforms could help regula-
tors to  control systemic spillover effects while 
at the  same time minimizing the  fear effect 
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arising from investor behavior during downturn 
market scenarios.

Conclusions
This paper investigates the extreme risk trans-
mission from oil to  eleven emerging stock 
markets of Central and Eastern Europe. In this 
process, the  scale-dependent non-linear rela-
tionship is analysed. First, the dynamic CVaR 
time series are estimated by the long memory 
FIAPARCH  model. Then, three decomposed 
wavelet details are created by the  MODWT 
methodology, which reflects different time ho-
rizons. In the final step, the wavelet time series 
are embedded in the two-state Markov switch-
ing model that reveals non-linear dependence 
between the markets.

According to  the  results, most of  the  re-
gime-dependent parameters are highly statisti-
cally significant, confirming that extreme risk 
spillover effect exists in  the  CEECs. The  re-
gime-dependent parameters are always signifi-
cantly higher in one regime, which means that 
the spillover effect dominantly happens in one 
regime. Results are heterogeneous among 
the  countries, which indicates that certain 
idiosyncratic characteristics of  the  countries 
are responsible for such findings. Relatively 
high statistically significant parameters are 
found in  the  cases of  relatively developed 
Polish, Czech and Hungarian stock markets. 
On the other hand, the Romanian market does 
not belong to developed stock markets, but it is 
the largest oil producer in Central and Eastern 
Europe, whereas several Romanian energy 
companies are quoted on the Romanian stock 
exchange. This could be the reason why BET 
suffers the highest impact from the oil market 
in the crisis regime in the short term.

In  the  case of  relatively small and inef-
ficient stock markets, such as Estonia, Slove-
nia, Bulgaria and Croatia, the  results indicate 
a  relatively high spillover effect in  the  tranquil 
regime. All  these countries have high oil con-
sumption per capita, which might explain high 
spillover effect in the second regime. Slovakia, 
Lithuania and Latvia do not report the spillover 
effect whatsoever in  the  short term, probably 
because they are inefficient and illiquid. An in-
teresting finding is that the  spillover effect is 
stronger in  longer time horizons, which sug-
gests that the long-term spillover effect is more 
persistent than the short-term counterpart, and 
also, this could mean that market participants 

are more cautious about the  long-term volatil-
ity in  the  crude oil market when making their 
trading strategies.

Based on the results, stock investors could 
formulate viable hedging strategies that will 
reduce the  impact of  oil markets. Portfolio 
managers could also benefit from the  results, 
particularly those that combine oil and stocks 
in a portfolio. The policymakers could use the re-
sults to decide whether particular measures have 
to be implemented in order to reduce the vulner-
ability of stock markets in different time horizons.

This paper researches emerging East Eu-
ropean countries, but future studies can use 
the  same methodological approach, focusing 
on other emerging markets around the globe, 
e.g.,  the  region of  South East Asia, Central 
Asia, North Africa, Pacific-basin countries and 
countries of Latin America.
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